No CrossRef data available.
Published online by Cambridge University Press: 26 April 2006
We consider the effects of critical-layer nonlinearity on spatially growing oblique instability waves on nominally two-dimensional shear layers between parallel streams. The analysis shows that three-dimensional effects cause nonlinearity to occur at much smaller amplitudes than it does in two-dimensional flows. The nonlinear instability wave amplitude is determined by an integro-differential equation with cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. We show that they always end in a singularity at a finite downstream distance.