Skip to main content
×
×
Home

Nonlinear waves with a threefold rotational symmetry in pipe flow: influence of a strongly shear-thinning rheology

  • Emmanuel Plaut (a1), Nicolas Roland (a1) and Chérif Nouar (a1)
Abstract

In order to model the transition to turbulence in pipe flow of non-Newtonian fluids, the influence of a strongly shear-thinning rheology on the travelling waves with a threefold rotational symmetry of Faisst & Eckhardt (Phys. Rev. Lett., vol. 91, 2003, 224502) and Wedin & Kerswell (J. Fluid Mech., vol. 508, 2004, pp. 333–371) is analysed. The rheological model is Carreau’s law. Besides the shear-thinning index $n_{C}$ , the dimensionless characteristic time $\unicode[STIX]{x1D706}$ of the fluid is considered as the main non-Newtonian control parameter. If $\unicode[STIX]{x1D706}=0$ , the fluid is Newtonian. In the relevant limit $\unicode[STIX]{x1D706}\rightarrow +\infty$ , the fluid approaches a power-law behaviour. The laminar base flows are first characterized. To compute the nonlinear waves, a Petrov–Galerkin code is used, with continuation methods, starting from the Newtonian case. The axial wavenumber is optimized and the critical waves appearing at minimal values of the Reynolds number $\mathit{Re}_{w}$ based on the mean velocity and wall viscosity are characterized. As $\unicode[STIX]{x1D706}$ increases, these correspond to a constant value of the Reynolds number based on the mean velocity and viscosity. This viscosity, close to the one of the laminar flow, can be estimated analytically. Therefore the experimentally relevant critical Reynolds number $\mathit{Re}_{wc}$ can also be estimated analytically. This Reynolds number may be viewed as a lower estimate of the Reynolds number for the transition to developed turbulence. This demonstrates a quantified stabilizing effect of the shear-thinning rheology. Finally, the increase of the pressure gradient in waves, as compared to the one in the laminar flow with the same mass flux, is calculated, and a kind of ‘drag reduction effect’ is found.

Copyright
Corresponding author
Email address for correspondence: emmanuel.plaut@univ-lorraine.fr
Footnotes
Hide All

Present address: SAFRAN, Villaroche Center, 77550 Moissy Cramayel, France.

Footnotes
References
Hide All
Avila M., Mellibovsky F., Roland N. & Hof B. 2013 Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110, 224502.
Avila K., Moxey D., de Lozar A., Avila M., Barkley D. & Hof B. 2011 The onset of turbulence in pipe flow. Science 333, 192196.
Avila M., Willis A. P. & Hof B. 2010 On the transient nature of localized pipe flow turbulence. J. Fluid Mech. 646, 127136.
Bird B., Armstrong R. & Hassager O. 1987 Dynamics of Polymeric Liquids. Wiley-Interscience.
Carreau J. P. 1972 Rheological equations from molecular network theories. Trans. Soc. Rheol. 16, 99127.
Chantry M., Willis A. P. & Kerswell R. R. 2014 Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow. Phys. Rev. Lett. 112, 164501.
Dennis D. J. C. & Sogaro F. M. 2014 Distinct organizational states of fully developed turbulent pipe flow. Phys. Rev. Lett. 113, 234501.
Draad A. A., Kuiken G. D. C. & Nieuwstadt F. T. M. 1998 Laminar-turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech. 377, 267312.
Duguet Y., Pringle C. C. T. & Kerswell R. R. 2008a Relative periodic orbits in transitional pipe flow. Phys. Fluids 20, 114102.
Duguet Y., Willis A. P. & Kerswell R. R. 2008b Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.
Eckhardt B., Schneider T. M., Hof B. & Westerweel J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.
Escudier M., Poole R., Presti F., Dales C., Nouar C., Desaubry C., Graham L. & Pullum L. 2005 Observations of asymmetrical flow behaviour in transitional pipe flow of yield-stress and other shear-thinning liquids. J. Non-Newtonian Fluid Mech. 127, 143155.
Escudier M. P., Presti F. & Smith S. 1999 Drag reduction in the turbulent pipe flow of polymers. J. Non-Newtonian Fluid Mech. 81, 197213.
Escudier M. P., Rosa S. & Poole R. J. 2009 Asymmetry in transitional pipe flow of drag-reducing polymer solutions. J. Non-Newtonian Fluid Mech. 161, 1929.
Faisst H. & Eckhardt B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.
Hof B., van Doorne C. W. H., Westerweel J. & Nieuwstadt F. T. M. 2005 Turbulence regeneration in pipe flow at moderate Reynolds numbers. Phys. Rev. Lett. 95, 214502.
Hof B., van Doorne C. W. H., Westerweel J., Nieuwstadt F. T. M., Faisst H., Eckhardt B., Wedin H., Kerswell R. R. & Waleffe F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 15941598.
Jenny M., Plaut E. & Briard A. 2015 Numerical study of subcritical Rayleigh–Bénard convection rolls in strongly shear-thinning Carreau fluids. J. Non-Newtonian Fluid Mech. 219, 1934.
Kerswell R. R. & Tutty O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.
Li W., Xi L. & Graham M. D. 2006 Nonlinear travelling waves as a framework for understanding turbulent drag reduction. J. Fluid Mech. 565, 353362.
Liu R. & Liu Q. S. 2012 Nonmodal stability in Hagen–Poiseuille flow of a shear-thinning fluid. Phys. Rev. E 85, 066318.
López Carranza S. N., Jenny M. & Nouar C. 2012 Pipe flow of shear-thinning fluids. C. R. Méc. 340, 602618.
López Carranza S. N., Jenny M. & Nouar C. 2013 Instability of streaks in pipe flow of shear-thinning fluids. Phys. Rev. E 88, 023005.
Mellibovsky F. & Eckhardt B. 2011 Takens-Bogdanov bifurcation of travelling-wave solutions in pipe flow. J. Fluid Mech. 670, 96129.
Meseguer A. 2003 Streak breakdown instability in pipe Poiseuille flow. Phys. Fluids 15, 12031213.
Pringle C. C. T., Duguet Y. & Kerswell R. R. 2009 Highly symmetric traveling waves in pipe flow. Phil. Trans. R. Soc. Lond. A 367, 457472.
Pringle C. C. T. & Kerswell R. R. 2007 Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys. Rev. Lett. 99, 074502.
Roland N., Plaut E. & Nouar C. 2010 Petrov–Galerkin computation of nonlinear waves in pipe flow of shear-thinning fluids: first theoretical evidences for a delayed transition. Comput. Fluids 39, 17331743.
Rudman M., Blackburn H. M., Graham L. J. W. & Pullum L. 2004 Turbulent pipe flow of shear-thinning fluids. J. Non-Newtonian Fluid Mech. 118, 3348.
Toms B. A. 1948 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of First International Congress on Rheology, vol. 2, pp. 135141. North-Holland.
Waleffe F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.
Waleffe F. 1998 Three-dimensional coherent states in plane shear-flows. Phys. Rev. Lett. 81, 41404143.
Wedin H. & Kerswell R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.
Willis A. P., Short K. Y. & Cvitanović P. 2016 Symmetry reduction in high dimensions, illustrated in a turbulent pipe. Phys. Rev. E 93, 022204.
Wygnanski I. J. & Champagne F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281335.
Zikanov O. Y. 1996 On the instability of pipe Poiseuille flow. Phys. Fluids 8, 29232932.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 86 *
Loading metrics...

Abstract views

Total abstract views: 229 *
Loading metrics...

* Views captured on Cambridge Core between 5th April 2017 - 22nd February 2018. This data will be updated every 24 hours.