Skip to main content
    • Aa
    • Aa

A non-local description of advection-diffusion with application to dispersion in porous media

  • Donald L. Koch (a1) (a2) and John F. Brady (a1)

When the lengthscales and timescales on which a transport process occur are not much larger than the scales of variations in the velocity field experienced by a tracer particle, a description of the transport in terms of a local, averaged macroscale version of Fick's law is not applicable. Here, a non-local transport theory is developed in which the average mass flux is not simply proportional to the average local concentration gradient, but is given by a convolution integral over space and time of the average concentration gradient times a spatial- and temporal-wavelength-dependent diffusivity. The non-local theory is applied to the transport of a passive tracer in the advective field that arises in the bulk fluid of a porous medium, and the complete residence-time distribution - space-time response to a unit source input - of the tracer is determined. It is also shown how the method of moments may be simply recovered as a special case of the non-local theory. While developed in the context of and applied to tracer dispersion in porous media, the non-local theory presented here is applicable to the general problem of determining the average transport behaviour in advection-diffusion-type systems in which spatial and temporal variations are occurring on scales comparable with the scale of interest.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 50 *
Loading metrics...

Abstract views

Total abstract views: 229 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th September 2017. This data will be updated every 24 hours.