Skip to main content Accessibility help
×
Home

Non-localized boundary layer instabilities resulting from leading edge receptivity at moderate supersonic Mach numbers

  • M. E. Goldstein (a1) and Pierre Ricco (a2)

Abstract

This paper uses matched asymptotic expansions to study the non-localized (which we refer to as global) boundary layer instabilities generated by free-stream acoustic and vortical disturbances at moderate supersonic Mach numbers. The vortical disturbances produce an unsteady boundary layer flow that develops into oblique instability waves with a viscous triple-deck structure in the downstream region. The acoustic disturbances (which for reasons given herein are assumed to have obliqueness angles that are close to a certain critical angle) generate slow boundary layer disturbances which eventually develop into oblique stable disturbances with an inviscid triple-deck structure in a region that lies downstream of the viscous triple-deck region. The paper shows that both the vortically generated instabilities and the acoustically generated oblique disturbances ultimately develop into modified Rayleigh-type instabilities (which can either grow or decay) further downstream.

Copyright

Corresponding author

Email address for correspondence: marvin.e.goldstein@nasa.gov

References

Hide All
Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions, Nat. Bureau Stand. Appl. Math. Ser., vol. 55. National Bureau of Standards, US Department of Commerce.
Bender, M. & Orszag, S. A. 1999 Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer.
Cowley, S. J. & Hall, P. 1990 On the instability of hypersonic flow past a wedge. J. Fluid Mech. 214, 1742.
Duck, P. W., Lasseigne, D. G. & Hussaini, M. Y. 1997 The effect of three-dimensional freestream disturbances on the supersonic flow past a wedge. Phys. Fluids 9 (2), 456467.
Fedorov, A. V. 2003 Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid Mech. 491, 101129.
Fedorov, A. V. & Khokhlov, A. P. 1991 Excitation of unstable modes in a supersonic boundary layer by acoustic waves. Fluid Dyn. 26 (4), 531537.
Gil, A., Segura, J. & Temme, N. M. 2002 Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30 (1), 1123.
Glauert, M. B. 1956 The laminar boundary layer on oscillating plates and cylinders. J. Fluid Mech. 1, 97110.
Goldstein, M. E. 1976 Aeroacoustics. McGraw-Hill.
Goldstein, M. E. 1983 The evolution of Tollmien–Schlichting waves near a leading edge. J. Fluid Mech. 127, 5981.
Goldstein, M. E. 2003 A generalized acoustic analogy. J. Fluid Mech. 488, 315333.
Goldstein, M. E., Sockol, P. M. & Sanz, J. 1983 The evolution of Tollmien–Schlichting waves near a leading edge. Part 2. Numerical determination of amplitudes. J. Fluid Mech. 129, 443453.
Gulyaev, A. N., Kozlov, V. E., Kuzenetsov, V. R., Mineev, B. I. & Sekundov, A. N. 1989 Interaction of a laminar boundary layer with external turbulence. Fluid Dyn. 24 (5), 700710 (translated from Izv. Akad. Navk. SSSR Mekh. Zhid. Gaza 6 5, 55–65).
Healey, J. J. 2006 A new convective instability of the rotating-disk boundary layer with growth normal to the disk. J. Fluid Mech. 560, 279310.
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20 (10), 657682.
Lam, S. H. & Rott, N.1960 Theory of Linearized Time-Dependent Boundary Layers. Cornell University Graduate School of Aeronautical Engineering Report AFOSR TN-60-1100.
Mack, L. M.1984 Boundary-layer linear stability theory. Special Course on Stability and Transition of Laminar flow. AGARD Rep. 709. pp. 1–81.
Maslov, A. A., Shiplyuk, A. N., Sidorenko, A. A. & Arnal, D. 2001 Leading-edge receptivity of a hypersonic boundary layer on a flat plate. J. Fluid Mech. 426, 7394.
Prandtl, L. 1938 Zur Berechnung der Grenzschichten. Z. Angew. Math. Mech. J. Appl. Math. Mech. 18 (1), 7782.
Reshotko, E. 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8 (1), 311349.
Ricco, P. & Wu, X. 2007 Response of a compressible laminar boundary layer to free-stream vortical disturbances. J. Fluid Mech. 587, 97138.
Smith, F. T. 1989 On the first-mode instability in subsonic, supersonic or hypersonic boundary layers. J. Fluid Mech. 198, 127153.
Stewartson, K. 1964 The Theory of Laminar Boundary Layers in Compressible Fluids. Clarendon Press.
Wanderley, J. B. V. & Corke, T. C. 2001 Boundary layer receptivity to free-stream sound on elliptic leading edges of flat plates. J. Fluid Mech. 429, 121.
Wu, X. 1999 Generation of Tollmien–Schlichting waves by convecting gusts interacting with sound. J. Fluid Mech. 397, 285316.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed