Skip to main content Accessibility help
×
Home

Normal stress differences in dense suspensions

  • Ryohei Seto (a1) and Giulio G. Giusteri (a2)

Abstract

The presence and the microscopic origin of normal stress differences in dense suspensions under simple shear flows are investigated by means of inertialess particle dynamics simulations, taking into account hydrodynamic lubrication and frictional contact forces. The synergic action of hydrodynamic and contact forces between the suspended particles is found to be the origin of negative contributions to the first normal stress difference $N_{1}$ , whereas positive values of $N_{1}$ observed at higher volume fractions near jamming are due to effects that cannot be accounted for in the hard-sphere limit. Furthermore, we found that the stress anisotropy induced by the planarity of the simple shear flow vanishes as the volume fraction approaches the jamming point for frictionless particles, while it remains finite for the case of frictional particles.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Normal stress differences in dense suspensions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Normal stress differences in dense suspensions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Normal stress differences in dense suspensions
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: setoryohei@me.com

References

Hide All
Azéma, E. & Radjaï, F. 2014 Internal structure of inertial granular flows. Phys. Rev. Lett. 112, 078001.
Ball, R. C. & Melrose, J. R. 1995 Lubrication breakdown in hydrodynamic simulations of concentrated colloids. Adv. Colloid Interface Sci. 59, 1930.
Barnes, H. A. 1989 Shear-thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33 (2), 329366.
Bergenholtz, J., Brady, J. F. & Vicic, M. 2002 The non-Newtonian rheology of dilute colloidal suspensions. J. Fluid Mech. 456, 239275.
Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. 2011 Jamming by shear. Nature 480, 355358.
Boromand, A., Jamali, S., Grove, B. & Maia, J. M. 2018 A generalized frictional and hydrodynamic model of the dynamics and structure of dense colloidal suspensions. J. Rheol. 62 (4), 905918.
Boyer, F., Guazzelli, É. & Pouliquen, O. 2011a Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.
Boyer, F., Pouliquen, O. & Guazzelli, É. 2011b Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech. 686, 525.
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20 (1), 111157.
Brady, J. F. & Vicic, M. 1995 Normal stresses in colloidal dispersions. J. Rheol. 39 (3), 545566.
Cates, M. E., Wittmer, J. P., Bouchaud, J.-P. & Claudin, P. 1998 Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81, 18411844.
Couturier, É., Boyer, F., Pouliquen, O. & Guazzelli, É. 2011 Suspensions in a tilted trough: second normal stress difference. J. Fluid Mech. 686, 2639.
Cwalina, C. D. & Wagner, N. J. 2014 Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions. J. Rheol. 58 (4), 949967.
Dai, S.-C., Bertevas, E., Qi, F. & Tanner, R. I. 2013 Viscometric functions for noncolloidal sphere suspensions with Newtonian matrices. J. Rheol. 57, 493510.
Dbouk, T., Lobry, L. & Lemaire, E. 2013 Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech. 715, 239272.
Gallier, S., Lemaire, E., Lobry, L. & Peters, F. 2016 Effect of confinement in wall-bounded non-colloidal suspensions. J. Fluid Mech. 799, 100127.
Gamonpilas, C., Morris, J. F. & Denn, M. M. 2016 Shear and normal stress measurements in non-Brownian monodisperse and bidisperse suspensions. J. Rheol. 60 (2), 289296 (Erratum: J. Rheol. 62 (2) 665–667, 2018).
Giusteri, G. G. & Seto, R. 2018 A theoretical framework for steady-state rheometry in generic flow conditions. J. Rheol. 62 (3), 713723.
Guazzelli, É. & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.
Guy, B. M., Hermes, M. & Poon, W. C. K. 2015 Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett. 115, 088304.
Hsiao, L. C., Jamali, S., Glynos, E., Green, P. F., Larson, R. G. & Solomon, M. J. 2017 Rheological state diagrams for rough colloids in shear flow. Phys. Rev. Lett. 119, 158001.
Laun, H. M. 1984 Rheological properties of aqueous polymer dispersions. Angew. Makromol. Chem. 123 (1), 335359.
Laun, H. M. 1994 Normal stresses in extremely shear thickening polymer dispersions. J. Non-Newtonian Fluid Mech. 54, 87108.
Lerner, E., Düring, G. & Wyart, M. 2012 Toward a microscopic description of flow near the jamming threshold. Europhys. Lett. 99 (5), 58003.
Lootens, D., van Damme, H., Hémar, Y. & Hébraud, P. 2005 Dilatant flow of concentrated suspensions of rough particles. Phys. Rev. Lett. 95, 268302.
Mari, R., Seto, R., Morris, J. F. & Denn, M. M. 2014 Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58 (6), 16931724.
Mari, R., Seto, R., Morris, J. F. & Denn, M. M. 2015 Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Proc. Natl Acad. Sci. USA 112 (50), 1532615330.
Mewis, J. & Wagner, N. J. 2011 Colloidal Suspension Rheology. Cambridge University Press.
Pan, Z., de Cagny, H., Habibi, M. & Bonn, D. 2017 Normal stresses in shear thickening granular suspensions. Soft Matt. 13, 37343740.
Peyneau, P.-E. & Roux, J.-N. 2008 Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78, 011307.
Phung, T. N., Brady, J. F. & Bossis, G. 1996 Stokesian Dynamics simulation of Brownian suspensions. J. Fluid Mech. 313, 181207.
Royer, J. R., Blair, D. L. & Hudson, S. D. 2016 Rheological signature of frictional interactions in shear thickening suspensions. Phys. Rev. Lett. 116, 188301.
Seto, R., Giusteri, G. G. & Martiniello, A. 2017 Microstructure and thickening of dense suspensions under extensional and shear flows. J. Fluid Mech. 825, R3.
Seto, R., Mari, R., Morris, J. F. & Denn, M. M. 2013 Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111, 218301.
Sierou, A. & Brady, J. F. 2002 Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46, 10311056.
Singh, A., Magnanimo, V. & Luding, S. 2013 Effect of friction and cohesion on anisotropy in quasi-static granular materials under shear. AIP Conf. Proc. 1542 (1), 682685.
Singh, A., Mari, R., Denn, M. M. & Morris, J. F. 2018 A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62 (2), 457468.
Singh, A. & Nott, P. R. 2003 Experimental measurements of the normal stresses in sheared Stokesian suspensions. J. Fluid Mech. 490, 293320.
Wilson, H. J. & Davis, R. H. 2002 Shear stress of a monolayer of rough spheres. J. Fluid Mech. 452, 425441.
Wyart, M. & Cates, M. E. 2014 Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112, 098302.
Yeo, K. & Maxey, M. R. 2010 Dynamics of concentrated suspensions of noncolloidal particles in Couette flow. J. Fluid Mech. 649, 205231.
Zarraga, I. E., Hill, D. A. & Leighton, D. T. 2000 The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44 (2), 185220.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Normal stress differences in dense suspensions

  • Ryohei Seto (a1) and Giulio G. Giusteri (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed