Abgrall, R. & Karni, S.
2001
Computations of compressible multifluids. J. Comput. Phys.
169, 594–623.

Baskar, S., Coulouvrat, F. & Marchiano, R.
2007
Nonlinear reflection of grazing acoustic shock waves: unsteady transition from von Neumann to Mach to Snell–Descartes reflections. J. Fluid Mech.
575, 27–55.

Ben-Dor, G.1978 Regions and transitions of non-stationary oblique shock wave diffractions in perfect and imperfect gases. *UTIAS Rep.* 232.

Ben-Dor, G.
1980
Analytical solution of double-Mach reflection. AIAA J.
18 (9), 1036–1043.

Ben-Dor, G.
1981
Relation between first and second triple-point trajectory angles in double-Mach reflection. AIAA J.
19 (4), 531–533.

Ben-Dor, G.
2007
Shock Wave Reflection Phenomena. Springer.

Ben-Dor, G. & Glass, I. I.
1979
Domains and boundaries of non-stationary oblique shock-wave reflexions. 1. Diatomic gas. J. Fluid Mech.
92, 459–496.

Ben-Dor, G. & Glass, I. I.
1980
Domains and boundaries of non-stationary oblique shock-wave reflexions. 2. Monatomic gas. J. Fluid Mech.
96, 735–756.

Ben-Dor, G., Mazor, G., Takayama, K. & Igra, O.
1987
Influence of surface roughness on the transition from regular to Mach reflection in pseudo-steady flows. J. Fluid Mech.
176, 333–356.

Ben-Dor, G. & Takayama, K.
1992
The phenomena of shock wave reflection – a review of unsolved problems and future research needs. Shock Waves
2, 211–223.

Birkhoff, G.
1950
Hydrodynamics, A Study in Logic, Fact and Similitude. Princeton University Press.

Bleakney, W., Weimer, D. K. & Fletcher, C. H.
1949
The shock tube: a facility for investigations in fluid dynamics. Rev. Sci. Instrum.
20, 807–815.

Borisov, A. A., Kogarko, S. M. & Lyubimov, A. V.
1965
Sliding of detonation and shock waves over liquid surfaces. Combust. Explos. Shock Waves
1, 19–23.

Cirak, F., Deiterding, R. & Mauch, S. P.
2007
Large-scale fluid–structure interaction simulation of viscoplastic and fracturing thin shells subjected to shocks and detonations. Comput. Struct.
85, 1049–1065.

Cole, R. H.
1948
Underwater Explosions. Dover.

Colella, P. & Henderson, L. F.
1990
The von Neumann paradox for the diffraction of weak shock waves. J. Fluid Mech.
213, 71–94.

Deiterding, R.
2009
A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Comput. Struct.
87, 769–783.

Deiterding, R.
2011
Block-structured adaptive mesh refinement-theory, implementation and application. ESAIM: Proc.
34, 97–150.

Deiterding, R., Cirak, F. & Mauch, S. P.
2009
Efficient fluid–structure interaction simulation of viscoplastic and fracturing thin-shells subjected to underwater shock loading. In International Workshop on Fluid-Structure Interaction (ed. Hartmann, S., Meister, A., Schäfer, M. & Turek, S.), Theory, Numerics and Applications, Herrsching am Ammersee, pp. 65–80. Kassel University Press GmbH.

Deiterding, R., Radovitzky, R., Mauch, S. P., Noels, L., Cummings, J. C. & Meiron, D. I.
2006
A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading. Engng Comput.
22 (3–4), 325–347.

Delpino Gonzales, O. & Eliasson, V.
2015
Effect of water content on dynamic fracture. Initiation of vinyl ester. Exp. Mech.
56, 637–644.

Desjouy, C., Ollivier, S., Marsden, O., Karzova, M. & Blanc-Benon, P.
2016
Irregular reflection of weak acoustic shock pulses on rigid boundaries: schlieren experiments and direct numerical simulation based on a Navier–Stokes solver. Phys. Fluids.
28, 027102.

Flåtten, T., Morin, A. & Munkefjord, S. T.
2011
On solutions to equilibrium problems for systems of stiffened gases. SIAM J. Appl. Maths
71 (1), 41–67.

Fox, R. W., McDonald, A. T. & Pritchard, P. J.
1985
Introduction to Fluid Mechanics. Wiley.

Geva, M., Ram, O. & Sadot, O.
2013
The non-stationary hysteresis phenomenon in shock wave reflections. J. Fluid Mech.
732, R1.

Grove, J. W. & Menikoff, R.
1990
Anomalous reflection of a shock wave at a fluid interface. J. Fluid Mech.
219, 313–336.

Henderson, L. F., Ma, J., Sakurai, A. & Takayama, K.
1990
Refraction of a shock wave at an air–water interface. Fluid Dyn. Res.
5, 337–350.

Hornung, H. G., Oertel, H. & Sandeman, R. J.
1979
Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation. J. Fluid Mech.
90, 541–560.

Hornung, H. G. & Robinson, M. L.
1982
Transition from regular to Mach reflection of shock waves. Part 2. The steady-flow criterion. J. Fluid Mech.
123, 155–164.

Hornung, H. G. & Taylor, J. R.
1982
Transition from regular to Mach reflection of shock waves. Part 1. The effect of viscosity in the pseudo-steady case. J. Fluid Mech.
123, 143–153.

Igra, D. & Takayama, K.
2001
Numerical simulation of shock wave interaction with a water column. Shock Waves
11, 219–228.

Igra, D. & Takayama, K.
2001
Investigation of aerodynamic breakup of a cylindrical water droplet. Atomiz. Sprays
11, 167–185.

Jeon, H., Gross, J. R., Estabrook, S., Koumlis, S., Wan, Q., Khanolkar, G. R., Tao, X., Mensching, D. M., Lesnick, E. J. & Eliasson, V.
2015
Shock wave attenuation using foam obstacles: does geometry matter?
Aerosp.
2, 353–375.

Jolgam, S., Ballil, A., Nowakowski, A. & Nicolleau, F.
2012
On equations of state for simulations of multiphase flows. In Proceedings of the World Congress on Engineering, vol. III. International Association of Engineers.

Karzova, M. M., Khokhlova, V. A., Salze, E., Ollivier, S. & Blanc-Benon, P.
2015
Mach stem formation in reflection and focusing of weak shock acoustic pulses. J. Acoust. Soc. Am.
137, EL436–EL442.

Kedrinskii, V. K.
2005
Hydrodynamics of Explosion: Experiments and Models. Springer.

Kleine, H., Timofeev, E., Hakkaki-Fard, A. & Sadot, O.
2014
The influence of Reynolds number on the triple point trajectories at shock reflection off cylindrical surfaces. J. Fluid Mech.
740, 47–60.

Law, C. K.1970 Diffraction of strong shock waves by a sharp compressive corner. *UTIAS Tech. Note* 150.

LeVeque, R. J.
2002
Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

Li, H. & Ben-Dor, G.
1995
Reconsideration of pseudo-steady shock wave reflections and the transition criteria between them. Shock Waves
5, 59–73.

Mach, E.
1878
Über den Verlauf von Funkenwellen in der Ebene und im Räume. Sitz.ber. Akad. Wiss. Wien
78, 819–838.

Marchiano, R., Coulouvrat, F., Baskar, S. & Thomas, J. L.
2007
Experimental evidence of deviation from mirror reflection for acoustical shock waves. Phys. Rev. E
76, 056602.

Meng, J. C. & Colonius, T.
2015
Numerical simulation of the early stages of high-speed droplet breakup. Shock Waves
25, 399–414.

Mouton, C. A.2006 Transition between regular reflection and Mach reflection in the dual-solution domain. PhD thesis, California Institute of Technology.

Naidoo, K. & Skews, B. W.
2011
Dynamic effects on the transition between two-dimensional regular and Mach reflection of shock waves in an ideal, steady supersonic free stream. J. Fluid Mech.
676, 432–460.

von Neumann, J.1943*a* Oblique reflection of shocks. *Explos. Res. Rep.* 12, Navy Dept., Bureau of Ordinance, Washington, DC, USA.

von Neumann, J.1943*b* Refraction, intersection and reflection of shock waves. *NAVORD Rep.* 203–45, Navy Dept., Bureau of Ordinance, Washington, DC, USA.

Onodera, H. & Takayama, K.
1990
Interaction of a plane shock wave with slitted wedges. Exp. Fluids
10, 109–115.

Perotti, L. E., Deiterding, R., Inaba, K., Shepherd, J. & Ortiz, M.
2013
Elastic response of water-filled fiber composite tubes under shock wave loading. Intl J. Solids Struct.
50, 473–486.

Ram, O., Geva, M. & Sadot, O.
2015
High spatial and temporal resolution study of shock wave reflection over a coupled convex–concave cylindrical surface. J. Fluid Mech.
768, 219–239.

Ridah, S.
1988
Shock waves in water. J. Appl. Phys.
64, 152–158.

Rodriguez, V., Jourdan, G., Marty, A., Allou, A. & Parisse, J. D.
2016
Planar shock wave sliding over a water layer. Exp. Fluids
57 (8), 125.

Sakurai, A.
1974
Blast wave from a plane source at an interface. J. Phys. Soc. Japan
36, 610–610.

Sasoh, A., Takayama, K. & Saito, T.
1992
A weak shock wave reflection over wedges. Shock Waves
2, 277–281.

Saurel, R. & Abgrall, R.
1999
A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys.
150, 425–467.

Settles, G. S.
2012
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. Springer.

Shyue, K.-M.
1998
An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys.
142, 208–242.

Shyue, K.-M.
1999
A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comput. Phys.
156, 43–88.

Shyue, K.-M.
2006
A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems. Shock Waves
15, 407–423.

Skews, B.
2005
Shock wave interaction with porous plates. Exp. Fluids
39, 875–884.

Skews, B. W. & Blitterswijk, A.
2011
Shock wave reflection off coupled surfaces. Shock Waves
21, 491–498.

Skews, B. W. & Kleine, H.
2010
Shock wave interaction with convex circular cylindrical surfaces. J. Fluid Mech.
654, 195–205.

Soni, V., Hadjadj, A., Chaudhuri, A. & Ben-Dor, G.
2017
Shock-wave reflections over double-concave cylindrical reflectors. J. Fluid Mech.
813, 70–84.

Takayama, K. & Ben-Dor, G.
1989
Pseudo-steady oblique shock wave reflections over water wedges. Exp. Fluids
8, 129–136.

Teodorczyk, A. & Shepherd, J. E.2012 Interaction of a shock wave with a water layer. *Tech. Rep.* FM2012-002. Graduate Aeronautical Laboratories, California Institute of Technology.

Toro, E. F., Spruce, M. & Speares, W.
1994
Restoration of the contact surface in the HLL-Riemann solver. Shock Waves
4, 25–34.

Versluis, M.
2013
High-speed imaging in fluids. Exp. Fluids
54, 1458.

Wang, C. & Eliasson, V.
2012
Shock wave focusing in water inside convergent structures. Intl J. Multiphys.
6, 267–282.