Skip to main content Accessibility help
×
Home

A numerical investigation of fine particle laden flow in an oscillatory channel: the role of particle-induced density stratification

  • CELALETTIN E. OZDEMIR (a1), TIAN-JIAN HSU (a2) and S. BALACHANDAR (a3)

Abstract

Studying particle-laden oscillatory channel flow constitutes an important step towards understanding practical application. This study aims to take a step forward in our understanding of the role of turbulence on fine-particle transport in an oscillatory channel and the back effect of fine particles on turbulence modulation using an Eulerian–Eulerian framework. In particular, simulations presented in this study are selected to investigate wave-induced fine sediment transport processes in a typical coastal setting. Our modelling framework is based on a simplified two-way coupled formulation that is accurate for particles of small Stokes number (St). As a first step, the instantaneous particle velocity is calculated as the superposition of the local fluid velocity and the particle settling velocity while the higher-order particle inertia effect neglected. Correspondingly, only the modulation of carrier flow is due to particle-induced density stratification quantified by the bulk Richardson number, Ri. In this paper, we fixed the Reynolds number to be ReΔ = 1000 and varied the bulk Richardson number over a range (Ri = 0, 1 × 10−4, 3 × 10−4 and 6 × 10−4). The simulation results reveal critical processes due to different degrees of the particle–turbulence interaction. Essentially, four different regimes of particle transport for the given ReΔ are observed: (i) the regime where virtually no turbulence modulation in the case of very dilute condition, i.e. Ri ~ 0; (ii) slightly modified regime where slight turbulence attenuation is observed near the top of the oscillatory boundary layer. However, in this regime a significant change can be observed in the concentration profile with the formation of a lutocline; (iii) regime where flow laminarization occurs during the peak flow, followed by shear instability during the flow reversal. A significant reduction in the oscillatory boundary layer thickness is also observed; (iv) complete laminarization due to strong particle-induced stable density stratification.

Copyright

Corresponding author

Email address for correspondence: eozdemir@ufl.edu

References

Hide All
Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 2: Numerical simulations. J. Fluid Mech. 225, 423444.
Armenio, V. & Sarkar, S. 2002 An investigation of stably stratified turbulent channel flow using large-eddy simulation J. Fluid Mech. 459, 142.
Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15 (3), 496513.
Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Barenblatt, G. F. 1953 On the motion of suspended particles in a turbulent stream. Prikladnaja Mat. Mekh. Engl. Trans. 17, 261274.
Birman, V., Martin, J. E. & Meiburg, E. 2005 The non-Boussinesq lock–exchange problem. Part 2: High-resolution simulations. J. Fluid Mech. 537, 125144.
Blennerhassett, P. J. & Bossom, A. P. 2002 The linear stability of flat Stokes layers. J. Fluid Mech. 464, 393410.
Blennerhassett, P. J. & Bossom, A. P. 2006 The linear stability of high-frequency oscillatory flow in a channel. J. Fluid Mech. 556, 125.
Bonometti, T. & Balachandar, S. 2008 Effect of Schmidt number on the structure and propagation of density currents. Theor. Comput. Fluid Dyn. 22, 341361.
Burton, T. M. & Eaton, J. K. 2005 Fully resolved simulations of particle–turbulence interaction. J. Fluid Mech. 545, 67111.
Cantero, M. I., Balachandar, S., Cantelli, A., Pirmez, C. & Parker, G. 2009 a Turbidity current with a roof: direct numerical simulation of self-stratified turbulent channel flow driven by suspended sediment. J. Geophys. Res. 114, C03008.
Cantero, M. I., Balachandar, S. & Garcia, M. 2008 An Eulerian–Eulerian model for gravity currents driven by inertial particles. Intl J. Multiph. Flow 34, 484501.
Cantero, M. I., Balachandar, S. & Parker, G. 2009 b Direct numerical simulation of stratification effects in a sediment-laden turbulent channel flow. J. Turbulence 10, 128.
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1987 Spectral Methods in Fluid Dynamics. Springer.
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.
Chang, Y. S. & Scotti, A. 2006 Turbulent convection of suspended sediments due to flow reversal. J. Geophys. Res. 111 (C07001), doi:10.1029/2005JC003240.
Conley, D. C., Falchetti, S., Lohmann, I. P. & Brocchini, M. 2008 The effects of flow stratification by non-cohesive sediment on transport in high-energy wave-driven flows. J. Fluid Mech. 610, 4367.
Conley, D. S. & Inman, D. L. 1992 Field observations of the fluid-granular boundary layer under near breaking waves. J. Geophys. Res. 97, C6, 96319643.
Cortese, T. & Balachandar, S. 1995 High performance spectral simulation of turbulent flows in massively parallel machines with distributed memory. Intl J. Supercomput. Appl. 9 (3), 187204.
Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 133.
Dalrymple, R. A. & Liu, P. L. 1978 Waves over soft mud beds: a two-layer fluid mud model. J. Phys. Oceanogr. 8, 11211131.
Einstein, H. A. & Chien, N. 1955 Effects of heavy sediment concentration near the bed on velocity and sediment distribution. MRD Sediment Ser. 8, University of California, Berkeley.
Elgar, S. & Raubenheimer, B. 2008 Wave dissipation by muddy seafloors. Geophys. Res. Lett. 35 (L07611), doi:10.1029/2008GL033245.
Elgobashi, S. 1991 Particle-laden turbulent flows: direct simulation and closure models. Appl. Sci. Res. 52, 301314.
Elgobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.
Elgobashi, S. & Truesdell, G. C. 1993 On the 2-way interaction between homogeneous turbulence and dispersed solid particles. Part 1: Turbulence modification. Phys. Fluids A 5, 17901801.
Felix, M. 2002 Flow structure of turbidity currents. Sedimentology 49, 397419.
Forristall, G. Z. & Reece, A. M. 1985 Measurements of wave attenuation due to a soft bottom: the SWAMP experiment. J. Geophys. Res. 90, 33673380.
Foster, D. L., Beach, R. A. & Holman, R. A. 2006 Turbulence observations of the nearshore wave bottom boundary layer. J. Geophy. Res. 111 (C04011).
Gelfenbaum, G. & Smith, J. D. 1986 Experimental evaluation of a generalized suspended-sediment transport theory. In Shelf Sands and Sand Stones (ed. Knight, R. J. & McLean, J. R.), pp. 133144, Canadian Society of Petroleum Engineers.
Glenn, S. M. & Grant, W. D. 1987 A suspended sediment stratification correction for combined wave and current flows. J. Geophys. Res. 92 (C8), 82448264.
Hall, P. 1978 The linear stability of flat Stokes layers. Proc. R. Soc. Lond. A 359, 151166.
Hall, B., Meiburg, E. & Kneller, B. 2008 Channel formation by turbidity currents: Navier–Stokes based linear stability analysis. J. Fluid Mech. 615, 185210.
Harris, T. C., Hogg, A. J. & Huppert, H. E. 2001 A mathematical framework for the analysis of particle-driven gravity currents. Proc. R. Soc. Lond. A 457, 12411272.
Harris, C. K., Traykovski, P. A. & Geyer, W. R. 2005 Flood dispersal and deposition by near-bed gravitational sediment flows and oceanographic transport: a numerical modeling study of the Eel River shelf, northern California. J. Geophys. Res. 110, C09025, doi:10.10292004JC002727.
Hino, M. 1963 Turbulent flow with suspended particles. J. Hydraul. Div. Am. Soc. Civ. Engng 89 (HY4), 161185.
Hino, M., Kashiwayanagi, M., Nakayama, A. & Hara, T. 1983 Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. J. Fluid Mech. 131, 363400.
Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 75, 193207.
Howard, L. N. 1961 Note on a paper by John W. Miles. J. Fluid Mech. 10, 509512.
Hsu, T.-J., Jenkins, J. T. & Liu, P. L.-F. 2004 On two-phase sediment transport: sheet flow of massive particles. Proc. R. Soc. Lond. A 460 (2048), 22232250.
Hsu, T.-J., Ozdemir, C. E. & Traykovski, P. A. 2009 High resolution numerical modeling of wave-supported sediment gravity-driven mudflows. J. Geophys. Res. 114, C05014, doi:10.1029/2008JC005006.
Hsu, T.-J., Traykovski, P. A. & Kineke, G. C. 2007 On modeling boundary layer and gravity driven fluid mud transport. J. Geophys. Res. 112, C04011, doi:10.1029/2006JC003719.
Huppert, H. E., Turner, J. S. & Hallworth, M. A. 1995 Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating-grid. J. Fluid Mech. 289, 263293.
Ivey, G. N. & Imberger, J. 1991 On the nature of turbulence in a stratified fluid. Part 1: The energetics of mixing. J. Phys. Oceanogr. 21, 650658.
Jensen, B. L., Sumer, M. & Fredsóe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.
Lamb, M. P., D'Asaro, E. & Parsons, J. D. 2004 Turbulent structure of high-density suspensions formed under waves. J. Geophys. Res. 109, C12026.
Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.
McLaughlin, J. B. 1989 Aerosol particle deposition in numerically simulated channel flow. Phys. Fluids A 1, 12111224.
Mei, C. C. & Liu, K. F. 1987 A Bingham plastic model for a muddy seabed under long waves. J. Geophys. Res. 94 (C13) 14 58114 594.
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508.
Necker, F., Hartel, C., Kleiser, L. & Meiburg, E. 2002 High-resolution simulations of particle-driven gravity currents. Intl J. Multiph. Flow 29, 279300.
Noh, Y. & Fernando, J. S. 1991 Dispersion of suspended particles in turbulent flow. Phys. Fluids A 3 (7), 17301740.
Nowak, N., Kakade, P. P. & Annapragada, A. V. 2003. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Engng 31, 374390.
Ozdemir, C. E., Hsu, T.-J. & Balachandar, S. 2010 Simulation of fine sediment transport in oscillatory boundary layer. J. HydroEnviron. Res. 3, 247259.
Rogers, C. B. & Eaton, J. K. 1991 The effect of small particles on fluid turbulence in a flat-plate, turbulent boundary layer in air. Phys. Fluids A 3, 928937.
Ross, M. A. & Mehta, A. J. 1989 On the mechanics of lutoclines and fluid muds. J. Coastal. Res. 5, 5161.
Salon, S., Armenio, V. & Crise, A. 2007 A numerical investigation of the Stokes boundary layer in the turbulent regime. J. Fluid Mech. 570, 253296.
Sarpkaya, T. 1993 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 253, 105140.
Schumann, U. & Gerz, T. 1995 Turbulent mixing in stably stratified shear flows. J. Appl. Meteor. 34, 3348.
Scotti., A. & Piomelli, U. 2001 Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 13 (5), 13671384.
Sequeiros, O. E., Cantelli, A., Viparelli, E., White, J. D. L., Garcia, M. H. & Parker, G. 2009 Modeling turbidity currents with non-uniform sediment and reverse buoyancy. Water Resour. Res. 45, W06408.
Sheremet, A. & Stone, G. W. 2003 Observations of nearshore wave dissipation over muddy sea beds. J. Geophys. Res. 108 (C11), 3357.
Spalart, P. R. & Baldwin, B. S. 1989 Direct simulation of a turbulent oscillating boundary layer. In Turbulent Shear Flows 6 (ed. Andre, J. C.), pp. 417440, Springer.
Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169.
Strang, E. J. & Fernando, H. J. S. 2001 Entrainment and mixing in stratified shear flows. J. Fluid Mech. 428, 349386.
Styles, R. & Glenn, S. M. 2000 Modeling stratified wave and current bottom boundary layers in the continental shelf. J. Geophys. Res. 105, 2411924139.
Tanaka, T. & Eaton, J. K. 2008 Classification of turbulence modification by dispersed spheres using a novel dimensionless number. Phys. Rev. Lett. 101, 114502.
Taylor, G. I. 1931 Effect of variation in density on the stability of superposed streams of fluid. Proc. R. Soc. Lond. A 132, 499523.
Taylor, M. G. 1959 The influence of the anomalous viscosity of blood upon its oscillatory flow. Phys. Med. Biol. 3, 273290.
Traykovski, P., Geyer, W. R., Irish, J. D. & Lynch, J. F. 2000 The role of wave-induced fluid mud flows for cross-shelf transport on the Eel River continental shelf. Cont. Shelf Res. 20, 21132140.
Trowbridge, J. H. & Kineke, G. C. 1994 Structure and dynamics of fluid mud on the Amazon continental shelf. J. Geophys. Res. 99 (C1), 865874.
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.
Vanoni, V. A. 1946 Transportation of suspended sediment by water. ASCE Trans. 111, 67133.
Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207232.
Winterwerp, J. C. 2001 Stratification effects by cohesive and non-cohesive sediment. J. Geophys. Res. 106 (C10), 2255922574.
Winterwerp, J. C. 2002 On the flocculation and settling velocity of estuarine mud. Cont. Shelf Res. 22, 13391360.
Winterwerp, J. C. & Van Kesteren, W. G. M. 2004 Introduction to the Physics of Cohesive Sediment in the Marine Environment. Elsevier.
Yang, J. N., Chung, T. R., Troutt, , & Crowe, C. T. 1990 The influence of particles on the spatial stability of two-phase mixing layers. Phys. Fluids A 2, 1839.
Yu, X, Hsu, T.-J. & Hanes, D. M. 2010 Sediment transport under wave groups: the relative importance between wave shape and boundary layer streaming. J. Geophys. Res. 15, C02013, doi:10.1029/2009JC005348.
Zeng, L., Balachandar, S., Fischer, P. & Najjar, F. M. 2008 Interactions of a stationary finite-sized particle with wall turbulence. J. Fluid Mech. 594, 271305.
Zeng, L., Balachandar, S. & Najjar, F. M. 2010 Wake response of a stationary finite-sized particle in a turbulent channel flow. Intl J. Multiph. Flow 36, 406422.
Zhou, D. & Ni, J. R. 1995 Effects of dynamic interaction on sediment laden turbulent flows. J. Geophys. Res. 100 (C1), 981996.
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

A numerical investigation of fine particle laden flow in an oscillatory channel: the role of particle-induced density stratification

  • CELALETTIN E. OZDEMIR (a1), TIAN-JIAN HSU (a2) and S. BALACHANDAR (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed