Skip to main content
    • Aa
    • Aa

Numerical investigation of the compressible flow past an aerofoil

  • LI-WEI CHEN (a1), CHANG-YUE XU (a1) and XI-YUN LU (a1)

Numerical investigation of the compressible flow past an 18% thick circular-arc aerofoil was carried out using detached-eddy simulation for a free-stream Mach number M = 0.76 and a Reynolds number Re = 1.1 × 107. Results have been validated carefully against experimental data. Various fundamental mechanisms dictating the intricate flow phenomena, including moving shock wave behaviours, turbulent boundary layer characteristics, kinematics of coherent structures and dynamical processes in flow evolution, have been studied systematically. A feedback model is developed to predict the self-sustained shock wave motions repeated alternately along the upper and lower surfaces of the aerofoil, which is a key issue associated with the complex flow phenomena. Based on the moving shock wave characteristics, three typical flow regimes are classified as attached boundary layer, moving shock wave/turbulent boundary layer interaction and intermittent boundary layer separation. The turbulent statistical quantities have been analysed in detail, and different behaviours are found in the three flow regimes. Some quantities, e.g. pressure-dilatation correlation and dilatational dissipation, have exhibited that the compressibility effect is enhanced because of the shock wave/boundary layer interaction. Further, the kinematics of coherent vortical structures and the dynamical processes in flow evolution are analysed. The speed of downstream-propagating pressure waves in the separated boundary layer is consistent with the convection speed of the coherent vortical structures. The multi-layer structures of the separated shear layer and the moving shock wave are reasonably captured using the instantaneous Lamb vector divergence and curl, and the underlying dynamical processes are clarified. In addition, the proper orthogonal decomposition analysis of the fluctuating pressure field illustrates that the dominated modes are associated with the moving shock waves and the separated shear layers in the trailing-edge region. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to this complex flow.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. J. Adrian & P. Moin 1988 Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190, 531559.

Y. Andreopoulos , J. H. Agui & G. Briassulis 2000 Shock wave-turbulence interactions. Annu. Rev. Fluid Mech. 32, 309345.

G. Berkooz , P. Holmes & J. L. Lumley 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.

R. Bourguet , M. Braza & A. Dervieux 2007 Reduced-order modelling for unsteady transonic flows around an airfoil. Phys. Fluids 19, 111701.

P. Bradshaw 1967 The turbulence structure of equilibrium boundary layers. J. Fluid Mech. 29, 625645.

P. Bradshaw 1977 Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9, 3354.

P. Chakraborty , S. Balachandar & R. J. Adrian 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.

J. D. Crouch , A. Garbaruk & D. Magidov 2007 Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224, 924940.

J. D. Crouch , A. Garbaruk , D. Magidov & A. Travin 2009 Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357369.

A. E. Deane , I. G. Kevrekidis , G. E. Karniadakis & S. A. Orszag 1991 Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids A 3, 23372354.

S. Deck 2005 Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43, 15561566.

E. Garnier , P. Sagaut & M. Deville 2002 Large eddy simulation of shock/homogeneous turbulence interaction. Comput. Fluids 31, 245268.

P. T. Harsha & S. C. Lee 1970 Correlation between turbulent shear stress and turbulent kinetic energy. AIAA J. 8, 15081510.

H. Heller & J. Delfs 1996 Cavity pressure oscillations: the generating mechanism visualized. J. Sound Vib. 196, 248252.

J. L. Herrin & J. C. Dutton 1997 The turbulence structure of a reattaching axisymmetric compressible free shear layer. Phys. Fluids 9, 35023512.

D. J. Hill , C. Pantano & D. I. Pullin 2006 Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech. 557, 2961.

C. M. Ho & N. S. Nosseir 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119142.

M. S. Howe 1975 Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71, 625673.

L. Jacquin , C. Cambon & E. Blin 1993 Turbulence amplification by a shock wave and rapid distortion theory. Phys. Fluids A 5, 25392550.

J. Jeong & F. Hussain 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.

S. Kawai & K. Fujii 2005 Computational study of supersonic base flow using hybrid turbulence methodology. AIAA J. 43, 12651275.

L. Larchevêque , P. Sagaut , I. Mary & O. Labbé 2003 Large-eddy simulation of a compressible flow past a deep cavity. Phys. Fluids 15, 193210.

B. H. K. Lee 1990 Oscillatory shock motion caused by transonic shock boundary-layer interaction. AIAA J. 28, 942944.

B. H. K. Lee 2001 Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37, 147196.

B. H. K. Lee , H. Murty & H. Jiang 1994 Role of Kutta waves on oscillatory shock motion on an airfoil. AIAA J. 32, 789796.

S. Lee , S. K. Lele & P. Moin 1997 Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225247.

S. K. Lele 1992 Shock-jump relations in a turbulent flow. Phys. Fluid A 4, 29002905.

S. K. Lele 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26, 211254.

L. L. Levy 1978 Experimental and computational steady and unsteady transonic flows about a thick airfoil. AIAA J. 16, 564572.

M. J. Lighthill 1952 On sound generated aerodynamically. Part I. General theory. Proc. R. Soc. Lond. A 211, 564587.

M. S. Loginov , N. A. Adams & A. A. Zheltovodov 2006 Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 565, 135169.

X. Y. Lu , S. W. Wang , H. G. Sung , S. Y. Hsieh & V. Yang 2005 Large-eddy simulations of turbulent swirling flows injected into a bump chamber. J. Fluid Mech. 527, 171195.

J. L. Lumley 1967 Rational approach to relations between motions of differing scales in turbulent flows. Phys. Fluids 10, 14051408.

D. A. Lyn , S. Einav , W. Rodi & J.-H. Park 1995 A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304, 285319.

I. Mary & P. Sagaut 2002 Large eddy simulation of flow around an airfoil near stall. AIAA J. 40, 11391145.

J. B. McDevitt , L. L. Levy & G. S. Deiwert 1976 Transonic flow about a thick circular-arc airfoil. AIAA J. 14, 606613.

Y. Na & P. Moin 1998 The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 377, 347373.

N. V. Nikitin , F. Nicoud , B. Wasistho , K. D. Squires & P. R. Spalart 2000 An approach to wall modelling in large-eddy simulations. Phys. Fluids 12, 16291632.

R. L. Panton & J. H. Linebarger 1974 Wall pressure spectra calculations for equilibrium boundary layers. J. Fluid Mech. 65, 261287.

V. C. Patel , W. Rodi & G. Scheuerer 1985 Turbulence models for near-wall and low Reynolds number flows: a review. AIAA J. 23, 13081319.

S. Pirozzoli & F. Grasso 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys. Fluids 18, 065113.

S. B. Pope 2000 Turbulent Flows. Cambridge University Press.

H. S. Ribner 1987 Spectra of noise and amplified turbulence emanating from shock-turbulence interaction. AIAA J. 25, 436442.

M. J. Ringuette , M. Wu & M. P. Martín 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.

S. K. Robinson 1991 Coherent motions in the turbulent boundary layers. Annu. Rev. Fluid Mech. 23, 601639.

C. L. Rumsey , M. D. Sanetrik , R. T. Biedron , N. D. Melson & E. B. Parlette 1996 Efficiency and accuracy of time-accurate turbulent Navier–Stokes computations. Comput. Fluids 25, 217236.

P. Sagaut 2002 Large-Eddy Simulation for Incompressible Flows. Springer.

P. Sagaut , S. Deck & M. Terracol 2006 Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press.

S. Sarkar 1992 The pressure-dilatation correlation in compressible flows. Phys. Fluids A 4, 26742682.

S. Sarkar , G. Erlebacher , M. Y. Hussaini & H. O. Kreiss 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.

M. L. Shur , P. R. Spalart , M. Strelets & A. Travin 1999 Detached-eddy simulation of an airfoil at high angle of attack. In Fourth International Symposium on Engineering Turbulence Modelling and Measurements (ed. W. Rodi & D. Laurence ) pp. 669678. Elsevier.

W. Shyy & V. S. Krishnamurty 1997 Compressible effects in modelling complex turbulent flows. Prog. Aerosp. Sci. 33, 587645.

F. Simon , S. Deck , P. Guillen , P. Sagaut & A. Merlen 2007 Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge. J. Fluid Mech. 591, 215253.

R. L. Simpson , M. Ghodbane & B. E. McGrath 1987 Surface pressure fluctuations in a separating turbulent boundary layer. J. Fluid Mech. 177, 167186.

P. R. Spalart 2009 Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181202.

C. G. Speziale , R. Abid & E. C. Anderson 1992 Critical evaluation of two-equation models for near-wall turbulence. AIAA J. 30, 324331.

S. Teramoto 2005 Large-eddy simulation of transitional boundary layer with impinging shock wave. AIAA J. 43, 23542363.

H. Tijdeman & R. Seebass 1980 Transonic flow past oscillating airfoils. Annu. Rev. Fluid Mech. 12, 181222.

B. Vreman , H. Kuerten & B. Geurts 1995 Shocks in direct numerical simulation of the confined three-dimensional mixing layer. Phys. Fluids 7, 21052107.

M. Wang , J. B. Freund & S. K. Lele 2006 Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483512.

M. Wang & P. Moin 2000 Computation of trailing-edge flow and noise using large-eddy simulation. AIAA J. 38, 22012209.

S. W. Wang , S. Y. Hsieh & V. Yang 2005 Unsteady flow evolution in swirl injector with radial entry. Part I. Stationary conditions. Phys. Fluids 17, 045106.

S. W. Wang , V. Yang , G. Hsiao , S. Y. Hsieh & H. C. Mongia 2007 Large-eddy simulations of gas-turbine swirl injector flow dynamics. J. Fluid Mech. 583, 99122.

J. Z. Wu , H. Y. Ma & M. D. Zhou 2006 Vorticity and Vortex Dynamics. Springer.

Q. Xiao , H. M. Tsai & F. Liu 2006 Numerical study of transonic buffet on a supercritical airfoil. AIAA J. 44, 620628.

C. Y. Xu , L. W. Chen & X. Y. Lu 2009 Numerical investigation of shock wave and turbulence interaction over a circular cylinder. Mod. Phys. Lett. B 23, 233236.

O. Zeman 1990 Dilatation dissipation: the concept and application in modelling compressible mixing layers. Phys. Fluids A 2, 178188.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 85 *
Loading metrics...

Abstract views

Total abstract views: 194 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.