Skip to main content
    • Aa
    • Aa

Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows

  • Matthaus U. Babler (a1), Luca Biferale (a2), Luca Brandt (a3), Ulrike Feudel (a4), Ksenia Guseva (a4), Alessandra S. Lanotte (a5), Cristian Marchioli (a6) (a7), Francesco Picano (a3) (a8), Gaetano Sardina (a3), Alfredo Soldati (a6) (a7) and Federico Toschi (a9) (a10)...

Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress ${\it\sigma}\sim {\it\varepsilon}^{1/2}$ , with ${\it\varepsilon}$ being the energy dissipation at the position of the aggregate, overcomes a given threshold ${\it\sigma}_{cr}$ , which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. U. Babler , L. Biferale  & A. S. Lanotte 2012 Breakup of small aggregates driven by turbulent hydrodynamical stress. Phys. Rev. E 85, 025301.

M. U. Babler  & M. Morbidelli 2007 Analysis of the aggregation–fragmentation population balance equation with application to coagulation. J. Colloid Interface Sci. 316, 428441.

M. U. Babler , M. Morbidelli  & J. Baldyga 2008 Modelling the breakup of solid aggregates in turbulent flows. J. Fluid Mech. 612, 261289.

M. U. Babler , A. S. Moussa , M. Soos  & M. Morbidelli 2010 Structure and kinetics of shear aggregation in turbulent flows. I. Early stage of aggregation. Langmuir 26, 1314213152.

E. Balkovsky , A. Fouxon  & V. Lebedev 2000 Turbulent dynamics of polymer solutions. Phys. Rev. Lett. 84, 47654768.

J. Bec 2005 Multifractal concentrations of inertial particles in smooth random flows. J. Fluid Mech. 528, 255277.

J. Bec , L. Biferale , A. S. Lanotte , A. Scagliarini  & F. Toschi 2010 Turbulent pair dispersion of inertial particles. J. Fluid Mech. 645, 497528.

V. Becker , E. Schlauch , M. Behr  & H. Briesen 2009 Restructuring of colloidal aggregates in shear flows and limitations of the free-draining approximation. J. Colloid Interface Sci. 339, 362372.

L. Biferale 2008 A note on the fluctuation of dissipative scale in turbulence. Phys. Fluids 20, 031703.

L. Biferale , G. Boffetta , A. Celani , A. Lanotte  & F. Toschi 2005 Particle trapping in three-dimensional fully developed turbulence. Phys. Fluids 17, 021701.

L. Biferale , C. Meneveau  & R. Verzicco 2014 Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropic turbulence. J. Fluid Mech. 754, 184207.

B. K. Brunk , D. L. Koch  & L. W. Lion 1998 Turbulent coagulation of colloidal particles. J. Fluid Mech. 364, 81113.

P. Bubakova , M. Pivokonsky  & P. Filip 2013 Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol. 235, 540549.

S. Chen , G. D. Doolen , R. H. Kraichnan  & Z.-S. She 1993 On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence. Phys. Fluids A 5, 458463.

J. De Bona , A. S. Lanotte  & M. Vanni 2014 Internal stresses and breakup of rigid isostatic aggregates in homogeneous and isotropic turbulence. J. Fluid Mech. 755, 365396.

M. A. Delichatsios 1975 Model for the breakup rate of spherical drops in isotropic turbulent flows. Phys. Fluids 18, 622623.

J. J. Derksen 2012 Direct numerical simulations of aggregation of monosized spherical particles in homogeneous isotropic turbulence. AIChE J. 58, 25892600.

M. L. Eggersdorfer , D. Kadau , H. J. Herrmann  & S. E. Pratsinis 2010 Fragmentation and restructuring of soft-agglomerates under shear. J. Colloid Interface Sci. 342, 261268.

J. C. Flesch , P. T. Spicer  & S. E. Pratsinis 1999 Laminar and turbulent shear-induced flocculation of fractal aggregates. AIChE J. 45, 11141124.

D. C. Fugate  & C. T. Friedrichs 2003 Controls on suspended aggregate size in partially mixed estuaries. Estuar. Coast. Shelf Sci. 58, 389404.

Y. M. Harshe  & M. Lattuada 2012 Breakage rate of colloidal aggregates in shear flow through Stokesian dynamics. Langmuir 28, 283292.

Y. M. Harshe , M. Lattuada  & M. Soos 2011 Experimental and modeling study of breakage and restructuring of open and dense colloidal aggregates. Langmuir 27, 57395752.

M. Kobayashi , Y. Adachi  & O. Setsuo 1999 Breakup of fractal flocs in a turbulent flow. Langmuir 15, 43514356.

K. A. Kusters , J. G. Wijers  & D. Thoenes 1997 Aggregation kinetics of small particles in agitated vessels. Chem. Engng Sci. 52, 107121.

T. Li , Z. Zhu , D. S. Wang , C. H. Yao  & H. X. Tang 2006 Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technol. 168, 104110.

V. I. Loginov 1985 Dynamics of the process of breakup of a liquid in a turbulent stream. J. Appl. Mech. Tech. Phys. 26, 509515.

J. Maerz , R. Verney , K. Wirtz  & U. Feudel 2011 Modeling flocculation processes: intercomparison of a size class-based model and a distribution-based model. Cont. Shelf Res. 31, S84S93.

P. L. Maffettone  & M. Minale 1998 Equation of change for ellipsoidal drops in viscous flow. J. Non-Newtonian Fluid Mech. 78, 227241.

C. Marchioli , A. Soldati , J. G. M. Kuerten , B. Arcen , A. Taniere , G. Goldensoph , K. D. Squires , M. F. Cargnelutti  & L. M. Portela 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34, 879893.

B. Ó Conchúir  & A. Zaccone 2013 Mechanism of flow-induced biomolecular and colloidal aggregate breakup. Phys. Rev. E 87, 032310.

E. Pitton , C. Marchioli , V. Lavezzo , A. Soldati  & F. Toschi 2012 Anisotropy in pair dispersion of inertial particles in turbulent channel flow. Phys. Fluids 24, 073305.

A. A. Potanin 1993 On the computer simulation of the deformation and breakup of colloidal aggregates in shear flow. J. Colloid Interface Sci. 157, 399410.

W. C. Reade  & L. R. Collins 2000 A numerical study of the particle size distribution of an aerosol undergoing turbulent coagulation. J. Fluid Mech. 415, 4564.

G. Sardina , F. Picano , P. Schlatter , L. Brandt  & C. M. Casciola 2014 Statistics of particle accumulation in spatially developing turbulent boundary layers. Flow Turbul. Combust. 92, 2740.

G. Sardina , P. Schlatter , L. Brandt , F. Picano  & C. M. Casciola 2012a Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.

G. Sardina , P. Schlatter , F. Picano , C. M. Casciola , L. Brandt  & D. S. Henningson 2012b Self-similar transport of inertial particles in a turbulent boundary layer. J. Fluid Mech. 706, 584596.

B. L. Sawford 1991 Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 3, 15771586.

C. Selomulya , G. Bushell , R. Amal  & T. D. Waite 2002 Aggregation mechanisms of latex of different particle sizes in a controlled shear environment. Langmuir 18, 19741984.

C. Selomulya , G. Bushell , R. Amal  & T. D. Waite 2003 Understanding the role of restructuring in flocculation: the application of a population balance model. Chem. Engng Sci. 58, 327338.

R. C. Sonntag  & W. B. Russel 1986 Structure and breakup of flocs subjected to fluid stresses: I. Shear experiments. J. Colloid Interface Sci. 113, 399413.

M. Soos , L. Ehrl , M. U. Babler  & M. Morbidelli 2010 Aggregate breakup in a contracting nozzle. Langmuir 26, 1018.

M. Soos , R. Kaufmann , R. Winteler , M. Kroupa  & B. Luthi 2013 Determination of maximum turbulent energy dissipation rate generated by a rushton impeller through large eddy simulation. AIChE J. 59, 36423658.

M. Soos , A. S. Moussa , L. Ehrl , J. Sefcik , H. Wu  & M. Morbidelli 2008 Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. J. Colloid Interface Sci. 319, 577589.

M. Soos , J. Sefcik  & M. Morbidelli 2006 Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering. Chem. Engng Sci. 61, 23492363.

M. Vanni  & A. Gastaldi 2011 Hydrodynamic forces and critical stresses in low-density aggregates under shear flow. Langmuir 27, 1282212833.

P. Vedula , P. K. Yeung  & R. O. Fox 2001 Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study. J. Fluid Mech. 433, 2960.

P. K. Yeung 2001 Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations. J. Fluid Mech. 427, 241274.

P. K. Yeung , S. B. Pope , A. G. Lamorgese  & D. A. Donzis 2006 Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103.

Y. Yuan  & R. R. Farnood 2010 Strength and breakage of activated sludge flocs. Powder Technol. 199, 111119.

A. Zaccone , M. Soos , M. Lattuada , H. Wu , M. U. Babler  & M. Morbidelli 2009 Breakup of dense colloidal aggregates under hydrodynamic stresses. Phys. Rev. E 79, 061401.

J. C. Zahnow , J. Maerz  & U. Feudel 2011 Particle-based modeling of aggregation and fragmentation processes: fractal-like aggregates. Physica D 240, 882893.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 52 *
Loading metrics...

Abstract views

Total abstract views: 196 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.