Skip to main content

Numerical simulations of non-spherical bubble collapse


A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.

Corresponding author
Present address: Center for Turbulence Research, Stanford University, Stanford, CA 94305-3030, USA. Email address for correspondence:
Hide All
Abgrall, R. 1996 How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150160.
Ball, G. J., Howell, B. P., Leighton, T. G. & Schofield, M. J. 2000 Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation. Shock Waves 10, 265276.
Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.
Best, J. P. 1993 The formation of toroidal bubbles upon the collapse of transient cavities. J. Fluid Mech. 251, 79107.
Best, J. P. & Kucera, A. 1992 A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245, 137154.
Blake, J. R., Taib, B. B. & Doherty, G. 1986 Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479497.
Bourne, N. K. & Field, J. E. 1992 Shock-induced collapse of single cavities in liquids. J. Fluid Mech. 244, 225240.
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.
Brennen, C. E. 2002 Fission of collapsing cavitation bubbles. J. Fluid Mech. 472, 153166.
Chang, C. H. & Liou, M. S. 2007 A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+-up scheme. J. Comput. Phys. 225, 840873.
Cocchi, J. P., Saurel, R. & Loraud, J. C. 1996 Treatment of interface problems with Godunov-type schemes. Shock Waves 5, 347357.
Cole, R. 1948 Underwater Explosions. Princeton University Press.
Fujikawa, S. & Akamatsu, T. 1980 Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97, 481512.
Gottlieb, S. & Shu, C. W. 1998 Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 7385.
Haas, J. F. & Sturtevant, B. 1987 Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 4176.
Hansson, I., Kedrinskii, V. & Mørch, K. A. 1982 On the dynamics of cavity clusters. J. Phys. D: Appl. Phys. 12, 17251734.
Harlow, F. & Amsden, A. 1971 Fluid dynamics. Tech Rep. LANL Monograph LA-4700. Los Alamos National Labs.
Herring, C. 1941 Theory of the pulsations of the gas bubble produced by an underwater explosion. Tech Rep. NDRC Division 6 Report C4-sr20. National Defense Research Committee.
Hickling, R. & Plesset, M. S. 1964 Collapse and rebound of a spherical bubble in water. Phys. Fluids 7, 714.
Hu, X. Y., Khoo, B. C., Adams, N. A. & Huang, F. L. 2006 A conservative interface method for compressible flows. J. Comput. Phys. 219, 553578.
Huang, Y. C., Hammitt, F. G. & Mitchell, T. M. 1973 Note on shock-wave velocity in high-speed liquid–solid impact. J. Appl. Phys. 44, 18681869.
Jamaluddin, A. R., Ball, G. J. & Leighton, T. J. 2005 Free-Lagrange simulations of shock/bubble interaction in shock wave lithotripsy. In Shock Waves: Proceedings of the 24th Intl Symp. on Shock Waves. Beijing, China. International Shock Wave Institute.
Johnsen, E. 2007 Numerical simulations of non-spherical bubble collapse. PhD thesis, California Institute of Technology.
Johnsen, E. & Colonius, T. 2006 Implementation of WENO schemes for compressible multicomponent flow problems. J. Comput. Phys. 219, 715732.
Johnsen, E. & Colonius, T. 2008 Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124, 20112020.
Joseph, D. D. 1989 Fluid Dynamics of Viscoelastic Liquids. Springer.
Klaseboer, E., Fong, S. W., Turangan, C. K., Khoo, B. C., Szeri, A. J., Calvisi, M. L., Sankin, G. N. & Zhong, P. 2007 Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 3356.
Kling, C. L. & Hammitt, F. G. 1972 A photographic study of spark-induced cavitation bubble collapse. Trans. ASME D: J. Basic Engng 94, 825833.
Kornfeld, M. & Suvorov, L. 1944 On the destructive action of cavitation. J. Appl. Phys. 15, 495506.
Kreider, W. 2008 Gas–vapor bubble dynamics in therapeutic ultrasound. PhD thesis, University of Washington.
Kumar, S. & Brennen, C. E. 1991 Nonlinear effects in the dynamics of clouds of bubbles. J. Acoust. Soc. Am. 89, 707714.
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391399.
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.
Nagrath, S., Jansen, K., Lahey, R. T. Jr. & Akhatov, I. 2006 Hydrodynamic simulation of air bubble implosion using a level set approach. J. Comput. Phys. 215, 98132.
Niederhaus, J. H. J., Greenough, J. A., Oakley, J. G., Ranjan, D., Anderson, M. H. & Bonazza, R. 2008 A computational parameter study for the three-dimensional shock–bubble interaction. J. Fluid Mech. 594, 85124.
Nourgaliev, R. R., Dinh, T. N. & Theofanous, T. G. 2006 Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213, 500529.
Ohl, C. D. & Ikink, R. 2003 Shock-wave-induced jetting of micron-size bubbles. Phys. Rev. Lett. 90, 14.
Ohl, C. D., Kurz, T., Geisler, R., Lindau, O. & Lauterborn, W. 1999 Bubble dynamics, shock waves and sonoluminescence. Phil. Trans. R. Soc. Lond. A 357, 269294.
Philipp, A., Delius, M., Scheffczyk, C., Vogel, A. & Lauterborn, W. 1993 Interaction of lithotripter-generated shock waves with air bubbles. J. Acoust. Soc. Am. 93, 24962509.
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.
Plesset, M. S. 1969 Cavitating flows. In Topics in Ocean Engineering (ed. Bretschneider, C. I.). Gulf Publishing Company.
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283290.
Popinet, S. & Zaleski, S. 2002 Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. 464, 137163.
Rattray, M. 1951 Perturbation effects in cavitation bubble dynamics. PhD thesis, California Institute of Technology.
Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 9498.
Samtaney, R. & Pullin, D. I. 1996 On initial-value and self-similar solutions of the compressible Euler equations. Phys. Fluids 8, 26502655.
Sankin, G. N., Simmons, W. N., Zhu, S. L. & Zhong, P. 2005 Shock wave interaction with laser-generated single bubbles. Phys. Rev. Lett. 95, 034501.
Shima, A., Tomita, Y. & Takahashi, K. 1984 The collapse of a gas bubble near a solid wall by a shock wave and the induced impulsive pressure. Proc. Inst. Mech. Engng 198C, 8186.
Shu, C. W. 1997 Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Tech Rep. ICASE Report No. 97-65. NASA Langley Research Center.
Shyue, K. M. 1998 An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208242.
Thompson, P. A. 1984 Compressible-Fluid Dynamics. Maple Press Company.
Thompson, K. W. 1990 Time-dependent boundary conditions for hyperbolic systems, II. J. Comput. Phys. 89, 439461.
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.
Toro, E. F., Spruce, M. & Speares, W. 1994 Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 2534.
Turangan, C. K., Jamaluddin, A. R., Ball, G. J. & Leighton, T. G. 2008 Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. J. Fluid Mech. 598, 125.
Vogel, A., Lauterborn, W. & Timm, R. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84, 719731.
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed