Skip to main content
×
Home

Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between 10−1 and 104 and Rayleigh numbers between 105 and 109

  • G. SILANO (a1) (a2), K. R. SREENIVASAN (a2) (a3) and R. VERZICCO (a4) (a5)
Abstract

We summarize the results of an extensive campaign of direct numerical simulations of Rayleigh–Bénard convection at moderate and high Prandtl numbers (10−1Pr ≤ 104) and moderate Rayleigh numbers (105Ra ≤ 109). The computational domain is a cylindrical cell of aspect ratio Γ = 1/2, with the no-slip condition imposed on all boundaries. By scaling the numerical results, we find that the free-fall velocity should be multiplied by in order to obtain a more appropriate representation of the large-scale velocity at high Pr. We investigate the Nusselt and the Reynolds number dependences on Ra and Pr, comparing the outcome with previous numerical and experimental results. Depending on Pr, we obtain different power laws of the Nusselt number with respect to Ra, ranging from Ra2/7 for Pr = 1 up to Ra0.31 for Pr = 103. The Nusselt number is independent of Pr. The Reynolds number scales as , neglecting logarithmic corrections. We analyse the global and local features of viscous and thermal boundary layers and their scaling behaviours with respect to Ra and Pr, and with respect to the Reynolds and Péclet numbers. We find that the flow approaches a saturation state when Reynolds number decreases below the critical value, Res ≃ 40. The thermal-boundary-layer thickness increases slightly (instead of decreasing) when the Péclet number increases, because of the moderating influence of the viscous boundary layer. The simulated ranges of Ra and Pr contain steady, periodic and turbulent solutions. A rough estimate of the transition from the steady to the unsteady state is obtained by monitoring the time evolution of the system until it reaches stationary solutions. We find multiple solutions as long-term phenomena at Ra = 108 and Pr = 103, which, however, do not result in significantly different Nusselt numbers. One of these multiple solutions, even if stable over a long time interval, shows a break in the mid-plane symmetry of the temperature profile. We analyse the flow structures through the transitional phases by direct visualizations of the temperature and velocity fields. A wide variety of large-scale circulation and plume structures has been found. The single-roll circulation is characteristic only of the steady and periodic solutions. For other regimes at lower Pr, the mean flow generally consists of two opposite toroidal structures; at higher Pr, the flow is organized in the form of multi-jet structures, extending mostly in the vertical direction. At high Pr, plumes mainly detach from sheet-like structures. The signatures of different large-scale structures are generally well reflected in the data trends with respect to Ra, less in those with respect to Pr.

Copyright
Corresponding author
Email address for correspondence: verzicco@uniroma2.it
References
Hide All
Ahlers G., Grossmann S. & Lohse D. 2009 Large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Ahlers G. & Xu X. 2001 Prandtl-number dependence of heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 86, 33203323.
Ashkenazi S. & Steinberg V. 1999 High Rayleigh number turbulent convection in a gas near the gas–liquid critical point. Phys. Rev. Lett. 83, 36413644.
Batchelor G. K. 1959 Small scale variation of convected quantities like temperature in turbulent fluid. J. Fluid Mech. 5, 113133.
Belmonte A., Tilgner A. & Libchaber A. 1993 Boundary layer length scales in thermal turbulence. Phys. Rev. Lett. 70, 4067.
Bénard H. 1900 Les tourbillons cellulaires dans une nappe liquide. Revue Gen. Sci. Pures Appl. 11, 12611271.
Bodenschatz E., Pesch W. & Ahlers G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.
Boronska K. & Tuckerman L. S. 2006 Standing and travelling waves in cylindrical Rayleigh–Bénard convection. J. Fluid Mech. 559, 279298.
Boronska K. & Tuckerman L. S. 2010 Extreme multiplicity in cylindrical Rayleigh–Bénard convection: I. time-dependence and oscillations. Phys. Rev. E 81, 036321.
Breuer M., Wessling S., Schmalzl J. & Hansen U. 2004 Effect of inertia in Rayleigh–Bénard convection. Phys. Rev. E 69, 026302.
Brown E. & Ahlers G. 2009 The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection. J. Fluid Mech. 638, 383400.
Brown E., Funfschilling D. & Ahlers G. 2007 Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection. J. Stat. Mech. P10005.
Calzavarini E., Lohse D., Toschi F. & Tripiccione R. 2005 Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence. Phys. Fluids 17, 055107.
Castaing B., Guranatne G., Heslot F., Kadanoff L., Libchaber A. & Thomae S. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.
Chandrasekar S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford Univ. Press.
Charlson G. S. & Sani R. L. 1970 Thermoconvective instability in a bounded cylindrical fluid layer. Intl J. Heat Mass Transfer 13, 14791496.
Chavanne X., Chilla F., Castaing B. & Hebral B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.
Clever R. & Busse F. 1974 Transition to time-dependent convection. J. Fluid Mech. 65, 625645.
Croquette V., Le Gal P. & Pocheau A. 1986 Spatial features of the transition to chaos in an extended system. Phys. Scripta T 13, 135.
Daya Z. A. & Ecke R. E. 2001 Does turbulent convection feel the shape of the container? Phys. Rev. Lett. 87 (18), 184501.
Donzis D. A., Sreenivasan K. R. & Yeung P. K. 2010 The Batchelor spectrum for mixing of passive scalars in isotropic turbulence. Flow, Turb. Combust. (in press).
Emran M. S. & Schumacher J. 2008 Fine-scale statistics of temperature and its derivatives in convective turbulence. J. Fluid Mech. 611, 1334.
Grossmann S. & Lohse D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Grossmann S. & Lohse D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 33163319.
Hardin G. R. & Sani R. L. 1993 Weakly non-linear solutions. Intl J. Numer. Meth. Fluids 17, 755.
Heslot F., Castaing B. & Libchaber A. 1987 Transitions to turbulence in helium gas. Phys. Rev. A 36, 58705873.
Hof B., Lucas G. J. & Mullin T. 1999 Flow state multiplicity in convection. Phys. Fluids 11, 28152817.
Kerr R. M. & Herring J. R. 2000 Prandtl number dependence of Nusselt number in direct numerical simulations. J. Fluid Mech. 419, 325344.
Kolmogorov A. N. 1941 The local structure of turbulence in incompressible viscous fluid for a very large Reynolds numbers. Proc. R. Soc. Lond. A 434, 913.
Kraichnan R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.
Krishnamurti R. & Howard L. N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. 78 (4), 19811985.
Lam S., Shang X., Zhou S. & Xia K. 2002 Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh–Bénard convection. Phys. Rev. Lett. E 65, 066306.
Niemela J. J., Skrbek L., Sreenivasan K. R. & Donnelly R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.
Niemela J. J., Skrbek L., Sreenivasan K. R. & Donnelly R. J. 2001 The wind in confined thermal convection. J. Fluid Mech. 449, 169178.
Niemela J. J. & Sreenivasan K. R. 2003 Confined turbulent convection. J. Fluid Mech. 481, 355384.
Oresta P., Stringano G. & Verzicco R. 2007 Transitional regimes and rotation effects in Rayleigh–Bénard convection in a slender cylindrical cell. Eur. J. Mech. B/Fluids 26 (1), 114.
Peltier W. R. 1989 Mantle Convection: Plate Tectonics and Global Dynamics. Gordon and Breach.
Prandtl L. 1952 Essentials of Fluid Mechanics, Chapter V. Hafner.
Rayleigh Lord 1916 On convective currents in horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag. 32, 529546.
Roche P. E., Castaing B., Chabaud B. & Hébral B. 2002 Prandtl and Rayleigh numbers dependencies in Rayleigh–Bénard convection. Europhys. Lett. 58, 693698.
Rudiger S. & Feudel F. 2000 Patter formation in Rayleigh–Bénard convection in a cylindrical container. Phys. Rev. E 62, 49274931.
Schmalzl J., Breuer M. & Hansen U. 2002 The influence of the Prandtl number on the style of vigorous thermal convection. Goephys. Astrophys. Fluid Dyn. 96, 381403.
Schumacher J., Sreenivasan K. R. & Yeung P. K. 2005 Very fine structures in scalar mixing. J. Fluid Mech. 531, 113122.
Shishkina O. & Thess A. 2009 Mean temperature profiles in turbulent Rayleigh–Bénard convection of water. J. Fluid Mech. 633, 449460.
Shishkina O. & Wagner C. 2008 Analysis of sheet-like thermal plumes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 599, 383404.
Shraiman B. I. & Siggia E. D. 1990 Heat transport in high-Rayleigh number convection. Phys. Rev. A 42, 36503653.
Silano G. 2009 Numerical simulations of thermal convection at high Prandtl numbers. PhD thesis, University of Trieste, http://hdl.handle.net/10077/3211.
Spalart P. R. & Moser R. D. 1991 Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297324.
Stevens R. J. A. M., Verzicco R. & Lohse D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.
Threlfall D. C. 1975 Free convection in low-temperature gaseous helium. J. Fluid Mech. 67, 1728.
Tritton D. J. 1988 Physical Fluid Dynamics, 2nd edn. Clarendon Press.
Umemura A. & Busse F. H. 1989 Axisymmetric convection at large Rayleigh number and infinite Prandtl number. J. Fluid Mech. 208, 459478.
Verzicco R. 2003 Turbulent thermal convection in a closed domain: viscous boundary layer and mean flow effects. Eur. Phys. J. B 35, 133141.
Verzicco R. & Camussi R. 1997 Transitional regimes of low-Prandtl thermal convection in a cylindrical cell. Phys. Fluids 9, 12871295.
Verzicco R. & Camussi R. 1999 Prandtl number effects in convective turbulence. J. Fluid Mech. 383, 5573.
Verzicco R. & Camussi R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.
Verzicco R. & Orlandi P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402414.
Xia K., Liam S. & Zhou S. 2002 Heat-flux measurement in high-Prantdl-number turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 88, 064501.
Zhou Q. & Xia K. Q. 2008 Comparative experimental study of local mixing of active and passive scalar in turbulent thermal convection. Phys. Rev. E 77, 056312.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 87 *
Loading metrics...

Abstract views

Total abstract views: 253 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.