Skip to main content Accessibility help

Numerical study of collisional particle dynamics in cluster-induced turbulence

  • Jesse Capecelatro (a1), Olivier Desjardins (a1) and Rodney O. Fox (a2) (a3)


We present a computational study of cluster-induced turbulence (CIT), where the production of fluid-phase kinetic energy results entirely from momentum coupling with finite-size inertial particles. A separation of length scales must be established when evaluating the particle dynamics in order to distinguish between the continuous mesoscopic velocity field and the uncorrelated particle motion. To accomplish this, an adaptive spatial filter is employed on the Lagrangian data with an averaging volume that varies with the local particle-phase volume fraction. This filtering approach ensures sufficient particle sample sizes in order to obtain meaningful statistics while remaining small enough to avoid capturing variations in the mesoscopic particle field. Two-point spatial correlations are computed to assess the validity of the filter in extracting meaningful statistics. The method is used to investigate, for the first time, the properties of a statistically stationary gravity-driven particle-laden flow, where particle–particle and fluid–particle interactions control the multiphase dynamics. Results from fully developed CIT show a strong correlation between the local volume fraction and the granular temperature, with maximum values located at the upstream boundary of clusters (i.e. where maximum compressibility of the particle velocity field exists), while negligible particle agitation is observed within clusters.


Corresponding author

Email address for correspondence:


Hide All
Agrawal, K., Loezos, P. N., Syamlal, M. & Sundaresan, S. 2001 The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech. 445 (1), 151185.
Anderson, T. B. & Jackson, R. 1967 Fluid mechanical description of fluidized beds. Equations of motion. Ind. Engng Chem. Fundam. 6 (4), 527539.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Briley, W. R. & McDonald, H. 1977 Solution of the multidimensional compressible Navier–Stokes equations by a generalized implicit method. J. Comput. Phys. 24 (4), 372397.
Capecelatro, J. & Desjardins, O. 2013 An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.
Capecelatro, J., Pepiot, P. & Desjardins, O. 2014 Numerical characterization and modeling of particle clustering in wall-bounded vertical risers. Chem. Engng J. 245, 295310.
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Gèotechnique 29 (1), 4765.
Dasgupta, S., Jackson, R. & Sundaresan, S. 1994 Turbulent gas–particle flow in vertical risers. AIChE J. 40 (2), 215228.
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.
Février, P., Simonin, O. & Squires, K. D. 2005 Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533, 146.
Fox, R. O. 2012 Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44, 4776.
Fox, R. O. 2014 On multiphase turbulence models for collisional fluid–particle flows. J. Fluid Mech. 742, 368424.
Glasser, B. J., Sundaresan, S. & Kevrekidis, I. G. 1998 From bubbles to clusters in fluidized beds. Phys. Rev. Lett. 81, 1849.
Goldhirsch, I. & Zanetti, G. 1993 Clustering instability in dissipative gases. Phys. Rev. Lett. 70 (11), 1619.
Hopkins, M. A. & Louge, M. Y. 1991 Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids 3 (1), 4757.
Hrenya, C. M. & Sinclair, J. L. 1997 Effects of particle-phase turbulence in gas–solid flows. AIChE J. 43 (4), 853869.
Igci, Y., Andrews, A. T., Sundaresan, S., Pannala, S. & O’Brien, T. 2008 Filtered two-fluid models for fluidized gas–particle suspensions. AIChE J. 54 (6), 14311448.
Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.
McQuarrie, D. A. 1976 Statistical Mechanics. Harper and Row.
Mitrano, P. P., Dahl, S. R., Hilger, A. M., Ewasko, C. J. & Hrenya, C. M. 2013 Dual role of friction in granular flows: attenuation versus enhancement of instabilities. J. Fluid Mech. 729, 484495.
Ozel, A., Fede, P. & Simonin, O. 2013 Development of filtered Euler–Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses. Intl J. Multiphase Flow 55, 4363.
Pozorski, J. & Apte, S. V. 2009 Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion. Intl J. Multiphase Flow 35 (2), 118128.
Royer, J. R., Evans, D. J., Oyarte, L., Guo, Q., Kapit, E., Möbius, M. E., Waitukaitis, S. R. & Jaeger, H. M. 2009 High-speed tracking of rupture and clustering in freely falling granular streams. Nature 459 (7250), 11101113.
Rumsey, C. L.2009 Compressibility considerations for $\kappa - \omega $ turbulence models in hypersonic boundary layer applications. Tech Rep. NASA/TM-2009-215705. NASA Center for AeroSpace Information.
Shaffer, F., Gopalan, B., Breault, R. W., Cocco, R., Karri, S. B., Hays, R. & Knowlton, T. 2013 High speed imaging of particle flow fields in CFB risers. Powder Technol. 242, 8699.
Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169.
Tenneti, S., Garg, R. & Subramaniam, S. 2011 Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Intl J. Multiphase Flow 37 (9), 10721092.
Tenneti, S. & Subramaniam, S. 2014 Particle-resolved direct numerical simulation for gas–solid flow model development. Annu. Rev. Fluid Mech. 46, 199230.
Tsuji, Y., Tanaka, T. & Yonemura, S. 1994 Particle induced turbulence. Appl. Mech. Rev. 47 (6), S75S79.
Wilcox, D. C. 2006 Turbulence Modeling for CFD. 3rd edn. DCW Industries.
Wylie, J. J. & Koch, D. L. 2000 Particle clustering due to hydrodynamic interactions. Phys. Fluids 12 (5), 964970.
Yin, X., Zenk, J. R., Mitrano, P. P. & Hrenya, C. M. 2013 Impact of collisional versus viscous dissipation on flow instabilities in gas–solid systems. J. Fluid Mech. 727, R2.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed