Skip to main content
×
Home
    • Aa
    • Aa

A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation

  • Edmond Lo (a1) and Chiang C. Mei (a1)
Abstract

In existing experiments it is known that the slow evolution of nonlinear deep-water waves exhibits certain asymmetric features. For example, an initially symmetric wave packet of sufficiently large wave slope will first lean forward and then split into new groups in an asymmetrical manner, and, in a long wavetrain, unstable sideband disturbances can grow unequally to cause an apparent downshift of carrier-wave frequency. These features lie beyond the realm of applicability of the celebrated cubic Schrödinger equation (CSE), but can be, and to some extent have been, predicted by weakly nonlinear theories that are not limited to slowly modulated waves (i.e. waves with a narrow spectral band). Alternatively, one may employ the fourth-order equations of Dysthe (1979), which are limited to narrow-banded waves but can nevertheless be solved more easily by a pseudospectral numerical method. Here we report the numerical simulation of three cases with a view to comparing with certain recent experiments and to complement the numerical results obtained by others from the more general equations.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 73 *
Loading metrics...

Abstract views

Total abstract views: 189 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.