Skip to main content Accessibility help

Observation of surface wave patterns modified by sub-surface shear currents

  • Benjamin K. Smeltzer (a1), Eirik Æsøy (a1) and Simen Å. Ellingsen (a1)


We report experimental observations of two canonical surface wave patterns – ship waves and ring waves – skewed by sub-surface shear, thus confirming effects predicted by recent theory. Observed ring waves on a still surface with sub-surface shear current are strikingly asymmetric, an effect of strongly anisotropic wave dispersion. Ship waves for motion across a sub-surface current on a still surface exhibit striking asymmetry about the ship’s line of motion, and large differences in transverse wavelength for upstream versus downstream motion are demonstrated, all of which is in good agreement with theoretical predictions. Neither of these phenomena can occur on a depth-uniform current. A quantitative comparison of measured versus predicted average phase shift for a ring wave is grossly mispredicted by no-shear theory, but in good agreement with predictions for the measured shear current. A clear difference in wave frequency within the ring wave packet is observed in the upstream versus downstream direction for all shear flows, while wave dispersive behaviour is identical to that for quiescent water for propagation normal to the shear current, as expected. Peak values of the measured two-dimensional Fourier spectrum for ship waves are shown to agree well with the predicted criterion of stationary ship waves, with the exception of some cases where results are imperfect due to the limited wavenumber resolution, transient effects and/or experimental noise. Experiments were performed on controlled shear currents created in two different ways, with a curved mesh and beneath a blocked stagnant-surface flow. Velocity profiles were measured with particle image velocimetry, and surface waves with a synthetic schlieren method. Our observations lend strong empirical support to recent predictions that wave forces on vessels and structures can be greatly affected by shear in estuarine and tidal waters.


Corresponding author

Email address for correspondence:


Hide All
Akselsen, A. H. & Ellingsen, S. Å. 2018 Weakly non-linear transient waves on a shear current: ring waves and skewed Langmuir rolls. J. Fluid Mech. 863, 114149.10.1017/jfm.2018.960
Alpers, W. & Hühnerfuss, H. 1989 The damping of ocean waves by surface films: a new look at an old problem. J. Geophys. Res. 94, 62516265.10.1029/JC094iC05p06251
Belcher, S. E., Grant, A. L. M., Hanley, K. E., Fox-Kemper, B., Van Roekel, L., Sullivan, P. P., Large, W. G., Brown, A., Hines, A., Calvert, D. et al. 2012 A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39, L18605.10.1029/2012GL052932
Campana, J., Terrill, E. J. & de Paolo, T. 2016 The development of an inversion technique to extract vertical current profiles from x-band radar observations. J. Atmos. Ocean. Technol. 33, 20152028.10.1175/JTECH-D-15-0145.1
Cauchy, A.-L. 1827 Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie. Mém. Présentés par Divers Savants Acad. Sci. Inst. Fr. 1, 3123.
Caplier, C., Rousseaux, G., Calluaud, D. & Laurent, D. 2015 The effects of river counter-currents on ship wakes: an experimental approach. In Proceedings of International Conference SHF and AICPN: Hydrodynamics and Simulation Applied to Inland Waterway and Port Approaches. SHF (Société Hydrotechnique de France).
Dalrymple, R. A.1973 Water wave models and wave forces with shear currents. Tech. Rep. 20. Coastal and Oceanographic Engineering Laboratory, Uni. Florida.
Darmon, A., Benzaquen, M. & Raphaël, E. 2014 Kelvin wake pattern at large Froude numbers. J. Fluid Mech. 738, R3.10.1017/jfm.2013.607
Dunn, W. & Tavoularis, S. 2007 The use of curved screens for generating uniform shear at low Reynolds numbers. Exp. Fluids 42, 281290.10.1007/s00348-006-0236-4
Elias, E. P. L., Gelfenbaum, G. & van der Westhuysen, A. J. 2012 Validation of a coupled wave-flow model in a high-energy setting: the mouth of the Columbia River. J. Geophys. Res. 117, C09011.10.1029/2012JC008105
Ellingsen, S. Å. 2014a Ship waves in the presence of uniform vorticity. J. Fluid Mech. 742, R2.10.1017/jfm.2014.28
Ellingsen, S. Å. 2014b Initial surface disturbance on a shear current: the Cauchy–Poisson problem with a twist. Phys. Fluids 26, 082104.10.1063/1.4891640
Ellingsen, S. Å. 2016 Oblique waves on a vertically sheared current are rotational. Eur. J. Mech (B/Fluids) 56, 156160.10.1016/j.euromechflu.2015.11.002
Ellingsen, S. Å. & Li, Y. 2017 Approximate dispersion relations for waves on arbitrary shear flows. J. Geophys. Res.: Oceans 122, 98899905.10.1002/2017JC012994
Faltinsen, O. M. 2005 Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press.
Fienup, J. R. 1982 Phase retrieval algorithms: a comparison. Appl. Opt. 21, 27582769.10.1364/AO.21.002758
Harper, J. F. & Dixon, J. N. 1974 The leading edge of a surface film on contaminated flowing water. In Proceedings of 5th Australasian Conference on Hydraulics and Fluid Mechanics, pp. 499505. University of Canterbury.
Johnson, R. S. 1990 Ring waves on the surface of shear flows: a linear and nonlinear theory. J. Fluid Mech. 215, 145160.10.1017/S0022112090002592
Khusnutdinova, K. R. & Zhang, X. 2016 Long ring waves in a stratified fluid over a shear flow. J. Fluid Mech. 794, 1444.10.1017/jfm.2016.147
Kumar, N., Voulgaris, G. & Warner, J. C. 2011 Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications. Ocean Mod. 47, 10971117.
Lee, C.-H. 1995 WAMIT Theory Manual. Massachusetts Institute of Technology, Department of Ocean Engineering.
Li, Y. & Ellingsen, S. Å. 2016 Ship waves on uniform shear current at finite depth: wave resistance and critical velocity. J. Fluid Mech. 791, 539567.10.1017/jfm.2016.20
Li, Y. & Ellingsen, S. Å. 2019 A framework for modelling linear surface waves on shear currents in slowly varying waters. J. Geophys. Res.: Oceans 124, 25272545.10.1029/2018JC014390
Li, Y., Smeltzer, B. K. & Ellingsen, S. Å. 2018 Transient wave resistance upon a real shear current. Eur. J. Mech. (B/Fluids) 73, 180192.10.1016/j.euromechflu.2017.08.012
Lund, B., Graber, H. C., Tamura, H., Collins, C. O. & Varlamov, S. M. 2015 A new technique for the retrieval of near-surface vertical current shear from marine X-band radar images. J. Geophys. Res.: Oceans 120, 84668496.10.1002/2015JC010961
Moisy, F., Rabaud, M. & Salsac, K. 2009 A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids 36, 10211036.10.1007/s00348-008-0608-z
Noblesse, F., He, J., Zhu, Y., Hong, L., Zhang, C., Zhu, R. & Yang, C. 2014 Why can ship wakes appear narrower than Kelvin’s angle? Eur. J. Mech. (B/Fluids) 46, 164171.10.1016/j.euromechflu.2014.03.012
Paterson, E. G., Wilson, R. V. & Stern, F. 2003 General-Purpose Parallel Unsteady RANS Ship Hydrodynamics Code: CFDSHIP-IOWA. Iowa Institute of Hydraulic Research.10.21236/ADA458092
Peregrine, D. H. 1976 Interaction of water waves and currents. Adv. Appl. Mech. 16, 9117.10.1016/S0065-2156(08)70087-5
Pethiagoda, R., McCue, S. W. & Moroney, T. J. 2014 What is the apparent angle of a Kelvin ship wave pattern? J. Fluid Mech. 758, 468485.10.1017/jfm.2014.530
Poisson, S.-D. 1818 Mémoire sur la théorie des ondes. Mem. Prés. divers Savants Acad. Roy. Sci. Inst. 1, 70186.
Rabaud, M. & Moisy, F. 2013 Ship wakes: Kelvin or Mach angle? Phys. Rev. Lett. 110, 214503.10.1103/PhysRevLett.110.214503
Scott, J. C. 1982 Flow beneath a stagnant film on water: the Reynolds ridge. J. Fluid Mech. 116, 283296.10.1017/S0022112082000469
Shrira, V. I. 1993 Surface waves on shear currents: solution of the boundary-value problem. J. Fluid Mech. 252, 565584.10.1017/S002211209300388X
Smeltzer, B. K. & Ellingsen, S. Å. 2017 Surface waves on arbitrary vertically-sheared currents. Phys. Fluids 29, 047102.10.1063/1.4979254
Stewart, R. J. & Joy, J. W. 1974 HF radio measurements of surface currents. Deep Sea Res. Ocean. Abstracts 21, 10391049.10.1016/0011-7471(74)90066-7
Thomson, S. W. 1887 On ship waves. Proc. Inst. Mech. Engrs 38, 409434.10.1243/PIME_PROC_1887_038_028_02
Wehausen, J. W. & Laitone, E. V. 1960 Surface waves. In Fluid Dynamics III (ed. Flügge, S.), Encyclopedia of Physics, vol. IX, pp. 446778. Springer.
Willert, C., Stasicki, B., Klinner, J. & Moessner, S. 2010 Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas. Sci. Technol. 21, 075402.10.1088/0957-0233/21/7/075402
Zippel, S. & Thomson, J. 2017 Surface wave breaking over sheared currents: observations from the mouth of the Columbia River. J. Geophys. Res.: Oceans 122, 33113328.10.1002/2016JC012498
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Smeltzer et al. supplementary movie
Examples of measured ship waves and ring waves.

 Video (2.0 MB)
2.0 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed