Skip to main content
×
Home
    • Aa
    • Aa

On a fourth-order envelope equation for deep-water waves

  • Peter A. E. M. Janssen (a1)
Abstract

The ordinary nonlinear Schrödinger equation for deep-water waves (found by a perturbation analysis to O3) in the wave steepness ε) compares unfavourably with the exact calculations of Longuet-Higgins (1978) for ε > 0·10. Dysthe (1979) showed that a significant improvement is found by taking the perturbation analysis one step further to O4). One of the dominant new effects is the wave-induced mean flow. We elaborate the Dysthe approach by investigating the effect of the wave-induced flow on the long-time behaviour of the Benjamin–Feir instability. The occurrence of a wave-induced flow may give rise to a Doppler shift in the frequency of the carrier wave and therefore could explain the observed down-shift in experiment (Lake et al. 1977). However, we present arguments why this is not a proper explanation. Finally, we apply the Dysthe equations to a homogeneous random field of gravity waves and obtain the nonlinear energy-transfer function recently found by Dungey & Hui (1979).

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 115 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2017. This data will be updated every 24 hours.