Skip to main content Accessibility help
×
Home

On a suspension of nearly spherical colloidal particles under large-amplitude oscillatory shear flow

  • Aditya S. Khair (a1)

Abstract

The dynamics of a dilute, monodisperse suspension of nearly spherical particles that undergo Brownian rotations in an oscillatory simple shear flow is quantified, as a paradigm for large-amplitude oscillatory shear (LAOS) rheology of complex fluids. We focus on the ‘strongly nonlinear’ regime of LAOS, defined by ${\it\beta}\gg 1$ and ${\it\beta}/{\it\alpha}\gg 1$ , where ${\it\beta}$ is a dimensionless shear rate (or Weissenberg number) and ${\it\alpha}$ is a dimensionless oscillation frequency (or Deborah number). We derive an asymptotic solution for the long-time periodic orientation probability density function of the particles. Our analysis reveals that the orientation dynamics consists of ‘core’ regions of rapid oscillation (on the time scale of the inverse of the shear-rate amplitude), separated by comparatively short ‘turning’ regions of slow evolution when the imposed flow vanishes. Uniformly valid approximations to the shear stress and normal stress differences (NSDs) of the suspension are then constructed: the non-Newtonian contribution to the shear stress, first NSD and second NSD, decays as ${\it\beta}^{-3/2}$ , ${\it\beta}^{-1}$ and ${\it\beta}^{-1/2}$ , respectively, at large ${\it\beta}$ . These stress scalings originate from the orientation dynamics at the turning regions. Therefore, it is the occasions when the flow vanishes that dominate the rheology of this paradigmatic complex fluid under LAOS.

Copyright

Corresponding author

Email address for correspondence: akhair@andrew.cmu.edu

References

Hide All
Aouane, O., Thiébaud, M., Benyoussef, A. & Wagner, C. 2014 Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos. Phys. Rev. E 90, 033011.
Adrian, D. W. & Giacomin, A. J. 1992 The quasiperiodic nature of a polyurethane melt in oscillatory shear. J. Rheol. 36, 12271243.
Bharadwaj, N. A. & Ewoldt, R. H. 2014 The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear. J. Rheol. 58, 891910.
Bird, R. B., Warner, H. R. Jr & Evans, D. C. 1971 Kinetic theory and rheology of dumbbell suspensions with Brownian motion. Adv. Polym. Sci. 8, 190.
Brenner, H. & Condiff, D. W. 1974 Transport mechanics in systems of orientable particles. IV. Convective transport. J. Colloid Interface Sci. 47, 199264.
Ewoldt, R. H., Hosoi, A. E. & McKinley, G. H. 2008 New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52, 14271458.
Frattini, P. L. & Fuller, G. G. 1986 Rheo-optical studies of the effect of weak Brownian rotations in sheared suspension. J. Fluid Mech. 168, 119150.
Giacomin, A. J., Bird, R. B., Johnson, L. M. & Mix, A. W. 2011 Large-amplitude oscillatory shear flow from the corotational Maxwell model. J. Non-Newtonian Fluid Mech. 166, 10811099.
Goddard, J. D. & Miller, C. 1967 Nonlinear effects in the rheology of dilute suspensions. J. Fluid Mech. 28, 657673.
Graham, M. D. 1995 Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows. J. Rheol. 39, 697712.
Gurnon, A. K. & Wagner, N. J. 2012 Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles. J. Rheol. 56, 333351.
Hatzikiriakos, S. G. & Dealy, J. M. 1991 Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J. Rheol 35, 497523.
Hinch, E. J. 1991 Perturbation Methods. Cambridge University Press.
Hyun, K., Kim, S. H, Ahn, K. H. & Lee, S. J. 2002 Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non-Newtonian Fluid Mech. 107, 5165.
Hyun, K. & Wilhelm, M. 2009 Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer systems. Macromolecules 42, 411422.
Hyun, K., Wilhelm, M., Klein, C. O., Cho, S. K., Nam, J. G., Ahn, K. H., Lee, S. J., Ewoldt, R. H. & McKinley, G. H. 2011 A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Proc. Polym. Sci. 36, 16971753.
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.
Khair, A. S. 2016 Large amplitude oscillatory shear of the Giesekus model. J. Rheol. 60, 257266.
Larson, R. G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.
Leahy, B. D., Koch, D. L. & Cohen, I. 2015 The effect of shear flow on the rotational diffusion of a single axisymmetric particle. J. Fluid Mech. 772, 4279.
Leal, L. G. & Hinch, E. J. 1972 The rheology of a suspension of nearly spherical particles subject to Brownian rotations. J. Fluid Mech. 55, 745765.
Onogi, S., Masuda, T. & Matsumoto, T. 1970 Non-linear behavior of viscoelastic materials. I. Disperse systems of polystyrene solution and carbon black. Trans. Soc. Rheol. 14, 275294.
Pearson, D. S. & Rochefort, W. E. 1982 Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J. Polym. Sci. B 20, 8398.
Philippoff, W. 1966 Vibrational measurements with large amplitudes. Trans. Soc. Rheol. 10, 317334.
Rallison, J. M. 1980 Note on the time-dependent deformation of a viscous drop which is almost spherical. J. Fluid Mech. 98, 625633.
Rogers, S. A., Erwin, B. M., Vlassopoulos, D. & Cloitre, M. 2011 A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. J. Rheol. 55, 435458.
Rogers, S. A. & Lettinga, M. P. 2012 A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J. Rheol. 56, 125.
Russel, W. B. 1978 Bulk stresses due to deformation of the electrical double layer around a charged sphere. J. Fluid Mech. 85, 673683.
Swan, J. W., Furst, E. M. & Wagner, N. J. 2014 The medium amplitude oscillatory shear of semi-dilute colloidal suspensions. Part I: Linear response and normal stress differences. J. Rheol. 58, 307337.
Vermant, J., Yang, H. & Fuller, G. G. 2001 Rheooptical determination of aspect ratio and polydispersity of nonspherical particles. AIChE J. 47, 790798.
Vlahovska, P. M., Blawzdziewicz, J. & Loewenberg, M. 2002 Nonlinear rheology of a dilute emulsion of surfactant-covered spherical drops in time-dependent flows. J. Fluid Mech. 463, 124.
Wilhelm, M. Fourier-transform rheology. Macromol. Mater. Engng 287, 83105.
Young, Y.-N., Blawzdziewicz, J., Cristini, V. & Goodman, R. H. 2008 Hysteretic and chaotic dynamics of viscous drops in creeping flows with rotation. J. Fluid Mech. 607, 209234.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed