Skip to main content
×
Home

On hydromagnetic oscillations in a rotating cavity

  • Roger F. Gans (a1) (a2)
Abstract

Time-dependent hydromagnetic phenomena in a rotating spherical cavity are investigated in the framework of an interior boundary-layer expansion. The interior problem is shown to contain waves whose frequencies are of order ω, Aω and A2ω, where ω is the rotation rate of the cavity and A2 = B2/4πρωA2 [Lt ] 1 is the Alfvén number. B is an imposed magnetic field, ρ the fluid density and R the radius of the cavity. The first type of wave is a modification of the hydro-dynamic inertial wave, the second is a pseudo-geostrophic wave and is involved in spin-up, and the third is related to the MAC waves of Braginskiy (1967).

It is shown that the MAC waves must satisfy more than the usual normal boundary conditions and that reference must be made to the boundary-layer solution to resolve the ambiguity regarding which conditions are to be taken. For normal liquid metals of small magnetic Prandtl number the MAC waves must satisfy full magnetic boundary conditions; only the no-slip conditions may be deferred to the boundary layers.

The boundary-layer structure is investigated in detail to display the interactions between applied field, viscosity, electrical conductivity, frequency and latitude. The decay of the pseudo-geostrophic modes, essentially the spin-up problem, is discussed for a non-axisymmetric constraining field and non-zero container conductivity. Three regimes exist, depending on container conductivity.

Copyright
References
Hide All
Benton, E. R. & Loper, D. E.1969 J. Fluid Mech. 39, 561-586.
Braginskiy, S. I.1967 Geomag. & Aeron. 7, 851859.
Braginskiy, S. I.1970 Geomag. & Aeron. 10, 172181.
Bullard, E. C.1949 Proc. Roy. Soc. A 197, 433-453.
Eckhardt, D., Larner, K. & Madden, T.1963 J. Geophys. Res. 68, 6279-6286.
Gans, R. F.1971 J. Fluid Mech. 45, 111-130.
Greenspan, H. P.1968 The Theory of Rotating Fluids. Cambridge University Press.
Hide, R.1966 Phil. Trans. Roy. Soc. A 259, 615-647.
Loper, D. E.1971 Phys. Earth Planet. Interiors, 4, 129137.
Loper, D. E. & Benton, E. R.1970 J. Fluid Mech. 43, 785-799.
Malkus, W. V. R.1967 J. Fluid Mech. 28, 793-802.
Munk, W. H. & MacDonald, G. J. F.1960 The Rotation of the Earth. Cambridge University Press.
Roberts, P. H.1967 An Introduction to Magnetohydrodynamics.New York: American Elsevier.
Smithells, C. J.1955 Metals Reference Book. Interscience.
Stacy, F. D.1967 Earth Planet. Sci. Letters, 3, 204206.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 73 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.