Skip to main content Accessibility help

On least-order flow representations for aerodynamics and aeroacoustics

  • Michael Schlegel (a1), Bernd R. Noack (a2), Peter Jordan (a2), Andreas Dillmann (a3), Elmar Gröschel (a4) (a5), Wolfgang Schröder (a4), Mingjun Wei (a6), Jonathan B. Freund (a7), Oliver Lehmann (a8) and Gilead Tadmor (a8)...


We propose a generalization of proper orthogonal decomposition (POD) for optimal flow resolution of linearly related observables. This Galerkin expansion, termed ‘observable inferred decomposition’ (OID), addresses a need in aerodynamic and aeroacoustic applications by identifying the modes contributing most to these observables. Thus, OID constitutes a building block for physical understanding, least-biased conditional sampling, state estimation and control design. From a continuum of OID versions, two variants are tailored for purposes of observer and control design, respectively. Firstly, the most probable flow state consistent with the observable is constructed by a ‘least-residual’ variant. This version constitutes a simple, easily generalizable reconstruction of the most probable hydrodynamic state to preprocess efficient observer design. Secondly, the ‘least-energetic’ variant identifies modes with the largest gain for the observable. This version is a building block for Lyapunov control design. The efficient dimension reduction of OID as compared to POD is demonstrated for several shear flows. In particular, three aerodynamic and aeroacoustic goal functionals are studied: (i) lift and drag fluctuation of a two-dimensional cylinder wake flow; (ii) aeroacoustic density fluctuations measured by a sensor array and emitted from a two-dimensional compressible mixing layer; and (iii) aeroacoustic pressure monitored by a sensor array and emitted from a three-dimensional compressible jet. The most ‘drag-related’, ‘lift-related’ and ‘loud’ structures are distilled and interpreted in terms of known physical processes.


Corresponding author

Email address for correspondence:


Hide All
1. Afanasiev, K. 2003 Stabilitätsanalyse, niedrigdimensionale Modellierung und optimale Kontrolle der Kreiszylinderumströmung [Stability analysis, low-dimensional modelling, and optimal control of the flow around a circular cylinder]. PhD Thesis, Technische Universität Dresden, Germany.
2. Ben-Israel, A. & Greville, T. N. E. 2003 Generalized Inverses: Theory and Applications, vol. 15, 2nd edn. CMS Books in Mathematics , Springer.
3. Bergmann, M., Cordier, L. & Brancher, J.-P. 2005 Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced order model. Phys. Fluids 17, 121.
4. Borée, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35, 188192.
5. Cavalieri, A. V. G., Daviller, G., Comte, P., Jordan, P., Tadmor, G & Gervais, Y. 2011a Using large eddy simulation to explore sound source mechanisms in jets. J. Sound Vib. 330, 40984113.
6. Cavalieri, A. V. G., Jordan, P., Agarwal, A. & Gervais, Y. 2011b Jittering wavepacket models for subsonic jet noise. J. Sound Vib. 330, 44744492.
7. Cavalieri, A. V. G., Jordan, P., Gervais, Y. & Colonius, T. 2011 c Axisymmetric superdirectivity in subsonic jets. In 17th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2011-2743.
8. Cazemier, W., Verstappen, R. W. C. P. & Veldman, A. E. P. 1998 Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 7, 16851699.
9. Coiffet, F., Jordan, P., Delville, J., Gervais, Y. & Ricaud, F. 2006 Coherent structures in subsonic jets: a quasi-irrotational source mechanism? Intl J. Aeroacoust. 5 (1), 6789.
10. Crighton, D. G. 1975 Basic principles of aerodynamic noise generation. Prog. Aerosp. Sci. 16, 3196.
11. Crighton, D. G. & Huerre, P. 1990 Shear layer pressure fluctuations and superdirective acoustic sources. J. Fluid Mech. 220, 355368.
12. Ffowcs Williams, J. E. 1963 The noise from turbulence convected at high speed. Phil. Trans. R. Soc. Lond. A 231, 505514.
13. Franzke, C. & Majda, A. J 2006 Low order stochastic mode reduction for a prototype atmospheric GCM. J. Atmos. Sci. 63 (2), 457479.
14. Freund, J. 2001 Noise sources in a low Reynolds number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277305.
15. Freund, J. & Colonius, T. 2002 POD analysis of sound generation by a turbulent jet. AIAA Paper 2002-0072.
16. Freund, J. & Colonius, T. 2009 Turbulence and sound-field POD analysis of a turbulent jet. Intl J. Aeroacoust. 8 (4), 337354.
17. Gerhard, J., Pastoor, M., King, R., Noack, B. R., Dillmann, A., Morzyński, M. & Tadmor, G. 2003 Model-based control of vortex shedding using low-dimensional Galerkin models, AIAA Paper 2003-4262.
18. Gröschel, E., Schröder, W., Schlegel, M., Scouten, J., Noack, B. R. & Comte, P. 2007 Reduced-order analysis of turbulent jet flow and its noise source. ESAIM: Proc. 16, 3350.
19. Gröschel, E., Schröder, W., Renze, P., Meinke, M. & Comte, P. 2008 Noise prediction for a turbulent jet using different hybrid methods. Comput. Fluids 37, 414426.
20. Guj, G., Carley, C. & Camussi, R. 2003 Acoustic identification of coherent structures in a turbulent jet. J. Sound Vib. 259 (5), 10371065.
21. Hileman, J. I., Caraballo, E. J., Thurow, B. S. & Samimy, M. 2004 Differences in dynamics of an ideally expanded Mach 1.3 jet during noise generation and relative quiet periods. AIAA Paper 2004-3015.
22. Hileman, J. I., Thurow, B. S., Caraballo, E. J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.
23. Hoarau, C., Borée, J., Laumonier, J. & Gervais, Y. 2006 Analysis of the wall pressure trace downstream of a separated region using extended proper orthogonal decomposition. Phys. Fluids 18, 055107.
24. Holmes, P., Lumley, J. L. & Berkooz, G. 1998 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.
25. Howe, M. S. 2003 Theory of Vortex Sound. Cambridge University Press.
26. Jordan, P. & Gervais, Y. 2008 Subsonic jet aeroacoustics: associating experiment, modelling and simulation. Exp. Fluids 44, 121.
27. Jordan, P., Schlegel, M., Stalnov, O., Noack, B. R. & Tinney, C. E. 2007 Identifying noisy and quiet modes in a jet. In 13th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2007–3602.
28. Jørgensen, B. H., Sørensen, J. N. & Brøns, M. 2003 Low-dimensional modelling of a driven cavity flow with two free parameters. Theor. Comput. Fluid Dyn. 16, 299317.
29. Juvé, D., Sunyach, M. & Comte-Bellot, G. 1980 Intermittency of the noise emission in subsonic cold jets. J. Sound Vib. 71 (3), 319332.
30. Lall, S., Marsden, J. E. & Glavaški, S. 1999 Empirical model reduction of controlled nonlinear systems. In Proceedings of the 14th IFAC World Congress, vol. F, pp. 473478. International Federation of Automatic Control (IFAC), Laxenburg, Austria.
31. Lall, S., Marsden, J. E. & Glavaški, S. 2002 A subspace iteration approach to balanced truncation for model reduction of nonlinear control systems. Intl J. Robust Nonlinear Control 12, 519535.
32. Laurendeau, E., Jordan, P., Bonnet, J. P., Delville, J., Parnaudeau, P. & Lamballais, E. 2008 Subsonic jet noise reduction by fluidic control: the interaction region and the global effect. Phys. Fluids 20, 101519.
33. Lee, H. K. & Ribner, H. S. 1972 Direct correlation of noise and flow of a jet. J. Acoust. Soc. Am. 52 (5), 12801290.
34. Lighthill, M. J. 1952 On sound generated aerodynamically: I. General theory. Proc. R. Soc. Lond. A 211, 564587.
35. Luchtenburg, D. M., Günther, B., Noack, B. R., King, R. & Tadmor, G. 2009 A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration. J. Fluid Mech. 623, 283316.
36. Lugt, H. J. 1996 Introduction to Vortex Theory. Vortex Flow Press.
37. Maurel, S., Borée, J. & Lumley, J. L. 2001 Extended proper orthogonal decomposition: application to jet/vortex interaction. Flow Turbul. Combust. 67, 125136.
38. Meinke, M., Schröder, W., Krause, E. & Rister, T. R. 2002 A comparison of second- and sixth-order methods for large-eddy simulations. Comput. Fluids 21, 695718.
39. Morzyński, M. 1987 Numerical solution of Navier–Stokes equations by the finite element method. In Proceedings of SYMKOM 87, Compressor and Turbine Stage Flow Path – Theory and Experiment, Reports of the Institute of Turbomachinery 527, Cieplne Maszyny Przepłwowe 94, pp. 119–128. Technical University of Łódź.
40. Morzyński, M., Stankiewicz, W., Noack, B. R., King, R., Thiele, F. & Tadmor, G. 2007 Continuous mode interpolation for control-oriented models of fluid flow. In Active Flow Control: Papers Contributed to the Conference ‘Active Flow Control 2006’, Berlin, Germany, September 27 to 29, 2006 (ed. R. King), Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 95, pp. 260–278. Springer.
41. Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
42. Noack, B. R., Morzyński, M. & Tadmor, G.  (Eds) 2011 Reduced-Order Modelling for Flow Control. CISM Courses and Lectures , vol. 528. Springer.
43. Noack, B. R., Papas, P. & Monkewitz, P. A. 2005 The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339365.
44. Noack, B. R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P. & Tadmor, G. 2008 A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilib. Thermodyn. 33 (2), 103148.
45. Noack, B. R., Schlegel, M., Morzyński, M. & Tadmor, G. 2010 System reduction strategy for Galerkin models of fluid flows. Intl J. Numer. Meth. Fluids 63 (2), 231248.
46. Noack, B. R. & Niven, R. K. 2012 Maximum entropy closure for a Galerkin model of an incompressible periodic wake. J. Fluid Mech. (in press).
47. Panda, J., Seasholtz, R. G. & Elam, K. A. 2005 Investigation of noise sources in high-speed jets via correlation measurements. J. Fluid Mech. 537, 349385.
48. Pastoor, M., Henning, L., Noack, B. R., King, R. & Tadmor, G. 2008 Feedback shear layer control for bluff body drag reduction. J. Fluid Mech. 608, 161196.
49. Picard, C. & Delville, J. 2000 Pressure velocity coupling in a subsonic round jet. Intl J. Heat Fluid Flow 21, 359364.
50. Protas, B. & Wesfreid, J. E. 2003 On the relation between the global modes and the spectra of drag and lift in periodic wake flows. C. R. Méc. 331, 4954.
51. Rempfer, D. & Fasel, H. F. 1994 Dynamics of three-dimensional coherent structures in a flat-plate boundary layer. J. Fluid Mech. 275, 257283.
52. Rodriguez Alvarez, D., Samanta, A., Cavalieri, A. V. G., Colonius, T. & Jordan, P. 2011 Parabolized stability equation models for predicting large-scale mixing noise of turbulent round jets. In 17th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2011-2743.
53. Rowley, C. W. 2005 Model reduction for fluids using balanced proper orthogonal decomposition. Intl J. Bifurcation Chaos 15 (3), 9971013.
54. Rowley, C. W., Colonius, T. & Murray, R. M. 2004 Model reduction for compressible flows using POD and Galerkin projection. Physica D 189 (1–2), 115129.
55. Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 Active control of a Mach 0.9 jet for noise mitigation using plasma actuators. AIAA J. 45 (4), 890901.
56. Schaffar, M. 1979 Direct measurements of the correlation between axial in-jet velocity fluctuations and far field noise near the axis of a cold jet. J. Sound Vib. 64 (1), 7383.
57. Schaffar, M. & Hancy, J. P 1982 Investigation of the noise emitting zones of a cold jet via causality correlations. J. Sound Vib. 81 (3), 377391.
58. Scharton, T. D. & White, P. H. 1972 Simple pressure source model of jet noise. J. Acoust. Soc. Am. 52 (1), 399412.
59. Schlegel, M., Noack, B. R., Comte, P., Kolomenskiy, D., Schneider, K., Farge, M., Scouten, J., Luchtenburg, D. M. & Tadmor, G. 2009 Reduced-order modelling of turbulent jets for noise control. In Numerical Simulation of Turbulent Flows and Noise Generation (ed. Brun, C., Juvé, D., Manhart, M. & Munz, C.-D. ). Notes on Numerical Fluid Mechanics and Multidisciplinary Design , vol. 104, pp. 327. Springer.
60. Seiner, J. M. 1974 The distribution of jet source strength intensity by means of a direct correlation technique. PhD Thesis, Pennsylvania State University, University Park, PA.
61. Seiner, J. M. & Reetoff, G. 1974 On the distribution of source coherency in subsonic jets. AIAA Paper 1974-4.
62. Siegel, S. G., Seidel, J., Fagley, C., Luchtenburg, D. M., Cohen, K. & McLaughlin, T. 2008 Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition. J. Fluid Mech. 610, 142.
63. Sirovich, L. 1987 Turbulence and the dynamics of coherent structures, Part I: Coherent structures. Q. Appl. Math. XLV, 561571.
64. Tam, C. 1998 Jet noise: since 1952. Theor. Comput. Fluid Dyn. 10, 393405.
65. Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
66. Tröltzsch, F. 2005 Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen. Vieweg.
67. Wei, M. 2004 Jet noise control by adjoint-based optimization. PhD Thesis, University of Illinois at Urbana-Champaign, IL.
68. Wei, M. & Freund, J. 2006 A noise-controlled free shear flow. J. Fluid Mech. 546, 123152.
69. Wei, M. & Rowley, C. W. 2009 Low-dimensional models of a temporally evolving free shear layer. J. Fluid Mech. 618, 113134.
70. Willcox, K. 2006 Flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. Fluids 35 (2), 208226.
71. Willcox, K. & Megretski, A. 2005 Fourier series for accurate, stable, reduced-order models in large-scale applications. SIAM J. Sci. Comput. 26 (3), 944962.
72. Willcox, K. & Peraire, J. 2002 Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40 (11), 23232330.
73. Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. 2006 Vorticity and Vortex Dynamics. Springer.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

On least-order flow representations for aerodynamics and aeroacoustics

  • Michael Schlegel (a1), Bernd R. Noack (a2), Peter Jordan (a2), Andreas Dillmann (a3), Elmar Gröschel (a4) (a5), Wolfgang Schröder (a4), Mingjun Wei (a6), Jonathan B. Freund (a7), Oliver Lehmann (a8) and Gilead Tadmor (a8)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.