Antonio, A. & Fabrizio, B.
2012
Statistics and scaling of turbulence in a spatially developing mixing layer at Ređťś† = 250. Phys. Fluids
24, 035109.
Antonia, R. A., Satyaprakash, B. A. & Hussain, A. K. F. M.
1980
Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets. Phys. Fluids
23, 695â€“700.
Avsarkisov, V., Oberlack, M. & Hoyas, S.
2014
New scaling laws for turbulent Poiseuille flow with wall transpiration. J. Fluid Mech.
746, 99â€“122.
Bluman, G. W.
1990
Simplifying the form of lie groups admitted by a given differential equation. J. Math. Anal. Appl.
145, 52â€“62.
Bluman, G. W., Cheviakov, A. F. & Anco, S. C.
2010
Applications of Symmetry Methods to Partial Differential Equations. Springer.
Bradbury, L. J. S.
1965
The structure of a self-preserving turbulent plane jet. J. Fluid Mech.
23, 31â€“64.
Burattini, P., Antonia, R. A. & Danaila, L.
2005
Similarity in the far field of a turbulent round jet. Phys. Fluids
17, 025101.
Cheviakov, A. F.
2007
Gem software package for computation of symmetries and conservation laws of differential equations. Comput. Phys. Commun.
176, 48â€“61.
Djenidi, L. & Antonia, R. A.
2015
A general self-preservation analysis for decaying homogeneous isotropic turbulence. J. Fluid Mech.
773, 345â€“365.
Ewing, D., Frohnapfel, B., Pedersen, W. K., George, J. M. & Westerweel, J.
2007
Two-point similarity in the round jet. J. Fluid Mech.
577, 309â€“330.
Gampert, M., Boschung, J., Hennig, F., Gauding, M. & Peters, N.
2014
The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface. J. Fluid Mech.
750, 578â€“596.
Gauding, M., Goebbert, J. H., Hasse, C. & Peters, N.
2015
Line segments in homogeneous scalar turbulence. Phys. Fluids
27 (9), 095102.
George, W. K.
1989
The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In Advances in Turbulence (ed. George, W. K. & Arndt, R.). Springer.
George, W. K.
1992
The decay of homogeneous isotropic turbulence. Phys. Fluids
4 (7), 1492â€“1509.
George, W. K.
2012
Asymptotic effect of initial and upstream conditions on turbulence. Trans. ASME J. Fluids Engng
134, 061203.
George, W. K. & Castillo, L.
1997
Zero-pressure-gradient turbulent boundary layer. Appl. Mech. Rev.
50, 689â€“729.
George, W. K. & Davidson, L.
2004
Role of initial conditions in establishing asymptotic flow behavior. AIAA J.
42, 438â€“446.
George, W. K. & Wang, H.
2009
The exponential decay of homogeneous turbulence. Phys. Fluids
21, 025108.
Ghosal, S. & Rogers, M. M.
1997
A numerical study of self-similarity in a turbulent plane wake using large eddy simulation. Phys. Fluids
9, 1729â€“1739.
Gutmark, E. & Wygnanski, I.
1976
The planar turbulent jet. J. Fluid Mech.
73, 465â€“495.
Heskestad, G.
1965
Hot-wire measurements in a plane turbulent jet. Trans. ASME J. Appl. Mech.
32, 721â€“734.
Hinze, O. J.
1959
Turbulence, An Introduction to its Mechanism and Theory. McGraw-Hill.
Hunger, F., Gauding, M. & Hasse, C.
2016
On the impact of the turbulent/non-turbulent interface on differential diffusion in a turbulent jet flow. J. Fluid Mech.
802, R5.
Hydon, P. E.
2000
Symmetry Methods for Differential Equations: A Beginnerâ€™s Guide. Cambridge University Press.
Keller, L. & Friedmann, A.
1924
Differentialgleichungen fĂĽr die turbulente Bewegung einer kompressiblen FlĂĽssigkeit. In First. Intl Congr. Appl. Mech. (ed. Biezeno, C. B. & Burgers, J. M.), pp. 395â€“405. Delft.
Khabirov, S. V. & Unal, G.
2002a
Group analysis of the von Karman and Howarth equation. Part I. Submodels. Commun. Nonlinear Sci. Numer. Simul.
7, 3â€“18.
Khabirov, S. V. & Unal, G.
2002b
Group analysis of the von Karman and Howarth equation. Part II. Physical invariant solutions. Commun. Nonlinear Sci. Numer. Simul.
7, 19â€“30.
Lele, S. K.
1992
Compact finite difference schemes with spectral-like resolution. J. Comput. Phys.
103 (1), 16â€“42.
Moser, R. D., Roger, M. M. & Ewing, D. W.
1998
Self-similarity of time-evolving plane wakes. J. Fluid Mech.
367, 255â€“289.
Oberlack, M.2000 Symmetrie, invarianz und selbstĂ¤hnlichkeit in der turbulenz. PhD thesis, Habilitation thesis.
Oberlack, M.
2001
A unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech.
427, 299â€“328.
Oberlack, M.
2002
Symmetries and invariant solutions of turbulent flows and their implications for turbulence modelling. In Theories of Turbulence. Springer.
Oberlack, M. & Guenther, S.
2003
Shear-free turbulent dffiusion-classical and new scaling laws. Fluid Dyn. Res.
33, 453â€“476.
Oberlack, M. & Rosteck, A.
2010
New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete Contin. Dyn. Syst.
3, 451â€“471.
Oberlack, M. & Rosteck, A.
2011
Applications of the new symmetries of the multi-point correlation equations. J. Phys.
318, 042011.
Oberlack, M., Waclawczyk, M., Rosteck, A. & Avsarkisov, V.
2015
Symmetries and their importance for statistical turbulence theory. Mech. Engng Rev.
2, 1â€“72.
Oberlack, M. & Zieleniewicz, M.
2013
Statistical symmetries and its impact on new decay modes and integral invariants of decaying turbulence. J. Turbul.
14, 4â€“22.
Panchapakesan, N. R. & Lumley, J. L.
1993
Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech.
246, 197â€“223.
Sadeghi, H., Lavoie, P. & Pollard, A.
2014
The effect of Reynolds number on the scaling range along the centreline of a round turbulent jet. J. Turbul.
15, 335â€“349.
Sadeghi, H., Lavoie, P. & Pollard, A.
2015
Equilibrium similarity solution of the turbulent transport equation along the centreline of a round jet. J. Fluid Mech.
772, 740â€“755.
Sadeghi, H., Lavoie, P. & Pollard, A.
2016
Scale-by-scale budget equation and its self-preservation in the shear layer of a free round jet. Intl J. Heat Fluid Flow
61, 85â€“95.
Sadeghi, H., Lavoie, P. & Pollard, A.
2018
Effects of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet. Exp. Fluids
59, 40.
Sadeghi, H. & Pollard, A.
2012
Effects of passive control rings positioned in the shear layer and potential core of a turbulent round jet. Phys. Fluids
24, 115103.
Talluru, K. M., Djenidi, L., Kamruzzaman, Md. & Antonia, R. A.
2016
Self-preservation in a zero pressure gradient rough-wall turbulent boundary layer. J. Fluid Mech.
788, 57â€“69.
Townsend, A. A.
1956
The Structure of Turbulent shear Flows, 1st edn. Cambridge University Press.
Townsend, A. A.
1976
The Structure of Turbulent Shear Flows, 2nd edn. Cambridge University Press.
Vu, T. K., Gefferson, G. F. & Carminati, J.
2012
Finding higher symmetries of differential equations using the maple package desolvii. Comput. Phys. Commun.
183, 1044â€“1054.
Waclawczyk, M., Staffolani, N., Oberlack, M., Rosteck, A., Wilczek, M. & Friedrich, R.
2014
Statistical symmetries of the Lundgrenâ€“Moninâ€“Novikov hierarchy. Phys. Rev. E
90, 013022.
Xu, G. & Antonia, R. A.
2002
Effect of different initial conditions on a turbulent round free jet. Exp. Fluids
33, 677â€“683.