Skip to main content
×
×
Home

On pressure impulse of a laser-induced underwater shock wave

  • Yoshiyuki Tagawa (a1), Shota Yamamoto (a1), Keisuke Hayasaka (a1) and Masaharu Kameda (a1)
Abstract

We experimentally examine a laser-induced underwater shock wave paying special attention to the pressure impulse, the time integral of the pressure evolution. Plasma formation, shock-wave expansion and the pressure in water are observed simultaneously using a combined measurement system that obtains high-resolution nanosecond-order image sequences. These detailed measurements reveal a distribution of the pressure peak which is not spherically symmetric. In contrast, remarkably, the pressure impulse is found to be symmetrically distributed for a wide range of experimental parameters, even when the shock waves are emitted from an elongated region. The structure is determined to be a collection of multiple spherical shock waves originating from point-like plasmas in the elongated region.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On pressure impulse of a laser-induced underwater shock wave
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On pressure impulse of a laser-induced underwater shock wave
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On pressure impulse of a laser-induced underwater shock wave
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: tagawayo@cc.tuat.ac.jp
References
Hide All
Antkowiak, A., Bremond, N., Le Dizès, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Buzukov, A. A., Popov, Y. A. & Teslenko, V. S. 1969 Experimental study of explosion caused by focusing monopulse laser radiation in water. J. Appl. Mech. Tech. Phys. 10 (5), 701708.
Cooker, M. J. & Peregrine, D. H. 1995 Pressure-impulse theory for liquid impact problems. J. Fluid Mech. 297, 193214.
Docchio, F., Regondi, P., Capon, M. R. C. & Mellerio, J. 1988a Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd : YAG laser pulses. 2: plasma luminescence and shielding. Appl. Opt. 27 (17), 36693674.
Docchio, F., Regondi, P., Capon, M. R. C. & Mellerio, J. 1988b Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd : YAG laser pulses. 1: analysis of the plasma starting times. Appl. Opt. 27 (17), 36613668.
Klaseboer, E., Fong, S. W., Turangan, C. K., Khoo, B. C., Szeri, A. J., Calvisi, M. L., Sankin, G. N. & Zhong, P. 2007 Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 3356.
Kodama, T., Hamblin, M. R. & Doukas, A. G. 2000 Cytoplasmic molecular delivery with shock waves: importance of impulse. Biophys. J. 79 (4), 18211832.
Lam, J. S., Greene, T. D. & Gupta, M. 2002 Treatment of proximal ureteral calculi: Holmium : yag laser ureterolithotripsy versus extracorporeal shock wave lithotripsy. J. Urol. 167 (5), 19721976.
Lauterborn, W., Kurz, T., Schenke, C., Lindau, O. & Wolfrum, B. 2001 Laser-induced bubbles in cavitation research. In IUTAM Symp. Free Surface Flows, Fluid Mechanics and Its Applications, vol. 62, pp. 169176. Springer.
Lauterborn, W. & Vogel, A. 2013 Shock wave emission by laser generated bubbles. In Bubble Dynamics and Shock Waves, pp. 67103. Springer.
Lee, S. & Doukas, A. G. 1999 Laser-generated stress waves and their effects on the cell membrane. IEEE J. Sel. Top. Quant. Electron. 5 (4), 9971003.
Marston, J. O. & Thoroddsen, S. T. 2015 Laser-induced micro-jetting from armored droplets. Exp. Fluids 56, 140.
Menezes, V., Kumar, S. & Takayama, K. 2009 Shock wave driven liquid microjets for drug delivery. J. Appl. Phys. 106, 086102.
Nahen, K. & Vogel, A. 1996 Plasma formation in water by picosecond and nanosecond Nd : Yag laser pulses. ii: transmission, scattering, and reflection. IEEE J. Sel. Top. Quant. Electron. 2 (4), 861871.
Noack, J. & Vogel, A. 1998 Single-shot spatially resolved characterization of laser-induced shock waves in water. Appl. Opt. 37 (19), 40924099.
Noack, J. & Vogel, A. 1999 Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE J. Quantum Electron. 35 (8), 11561167.
Peters, I. R., Tagawa, Y., Oudalov, N., Sun, C., Prosperetti, A., Lohse, D. & van der Meer, D. 2013 Highly focused supersonic microjets: numerical simulations. J. Fluid Mech. 719, 587605.
Razvi, H. A., Denstedt, J. D., Chun, S. S. & Sales, J. L. 1996 Intracorporeal lithotripsy with the holmium : yag laser. J. Urol. 156 (3), 912914.
Sankin, G., Simmons, W., Zhu, S. & Zhong, P. 2005 Shock wave interaction with laser-generated single bubbles. Phys. Rev. Lett. 95 (3), 034501.
Sankin, G. N., Zhou, Y. & Zhong, P. 2008 Focusing of shock waves induced by optical breakdown in water. J. Acoust. Soc. Am. 123 (6), 40714081.
Schoeffmann, H., Schmidt-Kloiber, H. & Reichel, E. 1988 Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones. J. Appl. Phys. 63 (1), 4651.
Sofer, M., Watterson, J., Wollin, T., Nott, L., Razvi, H. & Denstedt, J. 2002 Holmium: Yag laser lithotripsy for upper urinary tract calculi in 598 patients. J. Urol. 167 (1), 3134.
Tagawa, Y., Oudalov, N., Ghalbzouri, E. A., Sun, C. & Lohse, D. 2013 Needle-free injection into skin and soft matter with highly focused microjets. Lab on a Chip 13 (7), 13571363.
Tagawa, Y., Oudalov, N., Visser, C. W., Peters, I. R., van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2 (3), 031002.
Thoroddsen, S. T., Takehara, K., Etoh, T. G. & Ohl, C. D. 2009 Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101.
Vogel, A., Busch, S. & Parlitz, U. 1996a Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100 (1), 148165.
Vogel, A., Nahen, K., Theisen, D., Birngruber, R., Thomas, R. J. & Rockwell, B. A. 1999a Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption. Appl. Opt. 38 (16), 36363643.
Vogel, A., Nahen, K., Theisen, D. & Noack, J. 1996b Plasma formation in water by picosecond and nanosecond Nd : Yag laser pulses – part I: optical breakdown at threshold and superthreshold irradiance. IEEE J. Sel. Top. Quant. Electron. 2 (4), 847860.
Vogel, A., Noack, J., Hüttman, G. & Paltauf, G. 2005 Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81 (8), 10151047.
Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D. X., Noojin, G. D., Rockwell, B. A. & Birngruber, R. 1999b Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68 (2), 271280.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed