Hostname: page-component-5b777bbd6c-7mr9c Total loading time: 0 Render date: 2025-06-24T13:01:21.252Z Has data issue: false hasContentIssue false

On rotor noise interference

Published online by Cambridge University Press:  23 June 2025

Tiziano Pagliaroli*
Affiliation:
Dipartimento di Ingegneria, Università Niccolò Cusano, Via Don Carlo Gnocchi, 00166 Rome, Italy
Paolo Candeloro
Affiliation:
Dipartimento di Ingegneria, Università Niccolò Cusano, Via Don Carlo Gnocchi, 00166 Rome, Italy
Fabio Del Duchetto
Affiliation:
Dipartimento di Ingegneria, Università Niccolò Cusano, Via Don Carlo Gnocchi, 00166 Rome, Italy
Karl-Stéphane Rossignol
Affiliation:
German Aerospace Center, Braunschweig 38108, Germany
Jianping Yin
Affiliation:
German Aerospace Center, Braunschweig 38108, Germany
*
Corresponding author: Tiziano Pagliaroli, tiziano.pagliaroli@unicusano.it

Abstract

This study investigates noise generation from co-rotating rotors arranged in a side-by-side configuration. The analysis examines the effects of different phase delays and separation distances. A simple mathematical model is developed to provide insight into constructive and destructive noise interference. An experimental campaign was carried out to validate the proposed analytical model. Furthermore, the study introduces a space–time proper orthogonal decomposition technique to separate broadband and tonal components. Subsequently, wavelet analysis is applied to the tonal component, revealing a transition to chaos via intermittency, characterised by the local birth and decay of periodic oscillations. This phenomenon highlights the intricate and fascinating chaotic nature of interference transitions. The chaotic behaviour of the tonal component is related to the macro time scale of pressure fluctuations, and has been incorporated into the mathematical model. This model has several applications, including its potential use in the development of active control systems and the design of quieter distributed propulsion systems.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arndt, R.E.A., Long, D.F. & Glauser, M.N. 1997 The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J. Fluid Mech. 340, 133.10.1017/S0022112097005089CrossRefGoogle Scholar
Aubry, N. 1991 On the hidden beauty of the proper orthogonal decomposition. Theor. Comput. Fluid Dyn. 2 (5), 339352.10.1007/BF00271473CrossRefGoogle Scholar
Baars, W.J. & Tinney, C.E. 2014 Proper orthogonal decomposition-based spectral higher-order stochastic estimation. Phys. Fluids 26 (5), 055112.10.1063/1.4879255CrossRefGoogle Scholar
Bergé, P., Dubois, M., Mannevillel, P. & Pomeau, Y. 1980 Intermittency in Rayleigh–Bénard convection. J. Phys. Lett. 41 (15), 341345.10.1051/jphyslet:019800041015034100CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.10.1146/annurev.fl.25.010193.002543CrossRefGoogle Scholar
Berry, M.G., Ali, M.Y., Magstadt, A.S. & Glauser, M.N. 2017 DMD and POD of time-resolved schlieren on a multi-stream single expansion ramp nozzle. Intl J. Heat Fluid Flow 66, 6069.10.1016/j.ijheatfluidflow.2017.05.007CrossRefGoogle Scholar
Blunt, D. & Rebbechi, B. 2007 Propeller synchrophase angle optimisation study. In 13th AIAA/CEAS Aeroacoustics Conference, p. 3584. American Institute of Aeronautics and Astronautics.Google Scholar
Bonomo, L.A., Cordioli, J.A., Colaciti, A.K., Fonseca, J.V.N. & Simões, L.G.C. 2024 A comparison of tonal-broadband decomposition algorithms for propeller noise. Intl J. Aeroacoust. 23 (7–8), 737762.10.1177/1475472X241278650CrossRefGoogle Scholar
Candeloro, P., Martellini, E., Nederlof, R., Sinnige, T. & Pagliaroli, T. 2022 a An experimental study of the aeroacoustic properties of a propeller in energy harvesting configuration. Fluids 7 (7), 217.10.3390/fluids7070217CrossRefGoogle Scholar
Candeloro, P., Ragni, D. & Pagliaroli, T. 2022 b Small-scale rotor aeroacoustics for drone propulsion: a review of noise sources and control strategies. Fluids 7 (8), 279.10.3390/fluids7080279CrossRefGoogle Scholar
Candeloro, P., Ragni, D. & Pagliaroli, T. 2024 Unconventional application of serrated trailing edges for quieter propeller drones. In 30th AIAA/CEAS Aeroacoustics Conference (2024), p. 3107. American Institute of Aeronautics and Astronautics.Google Scholar
Cao, Y., Huang, X., Sheng, L. & Wang, Z. 2018 A flight experimental platform for synchrophasing control based on a small propeller UAV. Sci. China Technol. Sci. 61 (12), 19151924.10.1007/s11431-018-9329-0CrossRefGoogle Scholar
Celik, A., Jamaluddin, N.S., Baskaran, K., Meloni, S., Rezgui, D. & Azarpeyvand, M. 2024 Experimental characterisation of rotor noise in tandem configuration. Appl. Acoust. 222, 110053.10.1016/j.apacoust.2024.110053CrossRefGoogle Scholar
Chengyi, L., Yafeng, W. & Geng, C. 2014 Active noise control experiment for unmanned aerial vehicle propeller. Sci. Tech. Engng 14 (9), 16711815.Google Scholar
Cherney, M. 2018 Delivery drones cheer shoppers, annoy neighbors, scare dogs. Wall Street J. 578.Google Scholar
Dbouk, T. & Drikakis, D. 2021 Quadcopter drones swarm aeroacoustics. Phys. Fluids 33 (5), 057112.10.1063/5.0052505CrossRefGoogle Scholar
Del Duchetto, F., Pagliaroli, T., Candeloro, P., Rossignol, K.-S. & Yin, J. 2025 Aeroacoustic study of synchronized rotors. Aerospace 12 (2), 162.10.3390/aerospace12020162CrossRefGoogle Scholar
Dobrzynski, W. 1993 Propeller noise reduction by means of unsymmetrical blade-spacing. J. Sound Vib. 163 (1), 123126.10.1006/jsvi.1993.1152CrossRefGoogle Scholar
Farassat, F. & Succi, G.P. 1980 A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations. J. Sound Vib. 71 (3), 399419.10.1016/0022-460X(80)90422-8CrossRefGoogle Scholar
Feeny, B.F. 2008 A complex orthogonal decomposition for wave motion analysis. J. Sound Vib. 310 (1–2), 7790.10.1016/j.jsv.2007.07.047CrossRefGoogle Scholar
Guan, S., Lu, Y., Su, T. & Xu, X. 2021 Noise attenuation of quadrotor using phase synchronization method. Aerosp. Sci. Tech. 118, 107018.10.1016/j.ast.2021.107018CrossRefGoogle Scholar
Guan, Y., Gupta, V. & Li, L.K.B. 2020 Intermittency route to self-excited chaotic thermoacoustic oscillations. J. Fluid Mech. 894, R3.10.1017/jfm.2020.297CrossRefGoogle Scholar
Hasan, N. & Sanghi, S. 2007 Proper orthogonal decomposition and low-dimensional modelling of thermally driven two-dimensional flow in a horizontal rotating cylinder. J. Fluid Mech. 573, 265295.10.1017/S0022112006003806CrossRefGoogle Scholar
Hertzman, O., Fligelman, S. & Stalnov, O. 2022 Abatement of a multi-rotor tonal noise component with phase control technology. In 28th AIAA/CEAS Aeroacoustics 2022 Conference, p. 2834. American Institute of Aeronautics and Astronautics.Google Scholar
Intaratep, N., Alexander, W.N., Devenport, W.J., Grace, S.M. & Dropkin, A. 2016 Experimental study of quadcopter acoustics and performance at static thrust conditions. In 22nd AIAA/CEAS Aeroacoustics Conference, p. 2873. American Institute of Aeronautics and Astronautics.Google Scholar
Kabiraj, L. & Sujith, R. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.10.1017/jfm.2012.463CrossRefGoogle Scholar
Kashinath, K., Li, L.K.B. & Juniper, M.P. 2018 Forced synchronization of periodic and aperiodic thermoacoustic oscillations: lock-in, bifurcations and open-loop control. J. Fluid Mech. 838, 690714.10.1017/jfm.2017.879CrossRefGoogle Scholar
Klimaszewska, K. & Żebrowski, J.J. 2009 Detection of the type of intermittency using characteristic patterns in recurrence plots. Phys. Rev. E 80 (2), 026214.10.1103/PhysRevE.80.026214CrossRefGoogle ScholarPubMed
Knight, B. & Sirovich, L. 1990 Kolmogorov inertial range for inhomogeneous turbulent flows. Phys. Rev. Lett. 65 (11), 13561359.10.1103/PhysRevLett.65.1356CrossRefGoogle ScholarPubMed
Leib, S.J., Glauser, M.N. & George, W.K. 1984 Application of Lumley’s orthogonal decomposition to the axisymmetric turbulent jet mixing layer. In Ninth Rolla Symposium.Google Scholar
Lumley, J.L. 1970 Stochastic Tools in Turbulence. Academic Press.Google Scholar
Lumley, J.L. 1981 Coherent structures in turbulence. In Transition and Turbulence (ed. R.E. Meyer), pp. 215242. Elsevier.10.1016/B978-0-12-493240-1.50017-XCrossRefGoogle Scholar
Malkki, J., Yauwenas, Y., Doolan, C. & Moreau, D. 2024 Comparison of small rotor tonal and random noise decomposition methods. Acoust. Austral. 52 (3), 115.10.1007/s40857-024-00333-zCrossRefGoogle Scholar
Mancinelli, M., Pagliaroli, T., Di Marco, A., Camussi, R. & Castelain, T. 2017 Wavelet decomposition of hydrodynamic and acoustic pressures in the near field of the jet. J. Fluid Mech. 813, 716749.10.1017/jfm.2016.869CrossRefGoogle Scholar
Meloni, S., de Paola, E., Grande, E., Ragni, D., Stoica, L.G., Di Marco, A. & Camussi, R. 2023 A wavelet-based separation method for tonal and broadband components of low Reynolds-number propeller noise. Meas. Sci. Technol. 34 (4), 044007.10.1088/1361-6501/acb071CrossRefGoogle Scholar
Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.-C., Noack, B.R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.10.1017/jfm.2011.141CrossRefGoogle Scholar
Pagliaroli, T., Mancinelli, M., Troiani, G., Iemma, U. & Camussi, R. 2018 Fourier and wavelet analyses of intermittent and resonant pressure components in a slot burner. J. Sound Vib. 413, 205224.10.1016/j.jsv.2017.10.029CrossRefGoogle Scholar
Pagliaroli, T., Pagliaro, A., Patane, F., Tatí, A. & Peng, L. 2020 Wavelet analysis ultra-thin metasurface for hypersonic flow control. Appl. Acoust. 157, 107032.10.1016/j.apacoust.2019.107032CrossRefGoogle Scholar
Pagliaroli, T. & Troiani, G. 2020 Wavelet and recurrence analysis for lean blowout detection: an application to a trapped vortex combustor in thermoacoustic instability. Phys. Rev. Fluids 5 (7), 073201.10.1103/PhysRevFluids.5.073201CrossRefGoogle Scholar
Pandey, N., Valdez, J.A., Beaman, W. & Tinney, C.E. 2024 Acoustics of side-by-side synchrophased rotors. In 30th AIAA/CEAS Aeroacoustics Conference (2024), p. 3218. American Institute of Aeronautics and Astronautics.Google Scholar
Pascioni, K.A., Rizzi, S.A. & Schiller, N. 2019 Noise reduction potential of phase control for distributed propulsion vehicles. In AIAA Scitech 2019 Forum, p. 1069. American Institute of Aeronautics and Astronautics.Google Scholar
Patterson, A., Schiller, N.H., Ackerman, K.A., Gahlawat, A., Gregory, I.M. & Hovakimyan, N. 2020 Controller design for propeller phase synchronization with aeroacoustic performance metrics. In AIAA Scitech 2020 Forum, p. 1494. American Institute of Aeronautics and Astronautics.Google Scholar
Payne, F.R. & Lumley, J.L. 1967 Large eddy structure of the turbulent wake behind a circular cylinder. Phys. Fluids 10 (9), S194S196.10.1063/1.1762445CrossRefGoogle Scholar
Pierce, A.D. 1981 Acoustics: an Introduction to its Physical Principles and Applications. McGraw-Hill.Google Scholar
Platt, N., Spiegel, E.A. & Tresser, C. 1993 On-off intermittency: a mechanism for bursting. Phy. Rev. Lett. 70 (3), 279282.10.1103/PhysRevLett.70.279CrossRefGoogle ScholarPubMed
Pomeau, Y. & Manneville, P. 1980 Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74 (2), 189197.10.1007/BF01197757CrossRefGoogle Scholar
Schmidt, O.T. & Schmid, P.J. 2019 A conditional space–time POD formalism for intermittent and rare events: example of acoustic bursts in turbulent jets. J. Fluid Mech. 867, R2.10.1017/jfm.2019.200CrossRefGoogle Scholar
Shao, M., Lu, Y., Xu, X., Guan, S. & Lu, J. 2022 Experimental study on noise reduction of multi-rotor by phase synchronization. J. Sound Vib. 539, 117199.10.1016/j.jsv.2022.117199CrossRefGoogle Scholar
Sinibaldi, G. & Marino, L. 2013 Experimental analysis on the noise of propellers for small UAV. Appl. Acoust. 74 (1), 7988.10.1016/j.apacoust.2012.06.011CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Q. Appl. Maths 45 (3), 561571.10.1090/qam/910462CrossRefGoogle Scholar
Sree, D. 2013 A novel signal processing technique for separating tonal and broadband noise components from counter-rotating open-rotor acoustic data. Intl J. Aeroacoust. 12 (1–2), 169188.10.1260/1475-472X.12.1-2.169CrossRefGoogle Scholar
Tam, C.K.W., Salikuddin, M. & Hanson, D.B. 1988 Acoustic interference of counter-rotation propellers. J. Sound Vib. 124 (2), 357366.10.1016/S0022-460X(88)80193-7CrossRefGoogle Scholar
Tinney, C.E. & Jordan, P. 2008 The near pressure field of co-axial subsonic jets. J. Fluid Mech. 611, 175204.10.1017/S0022112008001833CrossRefGoogle Scholar
Tinney, C.E. & Sirohi, J. 2018 Multirotor drone noise at static thrust. AIAA J. 56 (7), 28162826.10.2514/1.J056827CrossRefGoogle Scholar
Tinney, C.E. & Valdez, J. 2020 Thrust and acoustic performance of small-scale, coaxial, corotating rotors in hover. AIAA J. 58 (4), 16571667.10.2514/1.J058489CrossRefGoogle Scholar
Tinney, C.E., Valdez, J. & Zhao-Dubuc, Y. 2024 Distilling the acoustics of stacked rotors using conventional pod with Vold–Kalman filters. In AIAA SCITECH. 2024 Forum, p. 2472. American Institute of Aeronautics and Astronautics.Google Scholar
Tinney, C.E., Zhao-Dubuc, Y. & Valdez, J. 2023 The space–time structure of sound produced by stacked rotors in hover using Vold–Kalman filters and proper orthogonal decomposition. Intl J. Aeroacoust. 22 (5–6), 576598.10.1177/1475472X231199186CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.10.1017/jfm.2018.283CrossRefGoogle Scholar
Turhan, B., Jawahar, H.K., Gautam, A., Syed, S., Vakil, G., Rezgui, D. & Azarpeyvand, M. 2024 Acoustic characteristics of phase-synchronized adjacent propellers. J. Acoust. Soc. Am. 155 (5), 32423253.10.1121/10.0025990CrossRefGoogle ScholarPubMed
Visser, M. 2003 Physical wavelets: Lorentz covariant, singularity-free, finite energy, zero action, localized solutions to the wave equation. Phys. Lett. A 315 (3–4), 219224.10.1016/S0375-9601(03)01051-XCrossRefGoogle Scholar
Whelchel, J., Alexander, W.N. & Intaratep, N. 2020 Propeller noise in confined anechoic and open environments. In AIAA Scitech 2020 Forum, p. 1252. American Institute of Aeronautics and Astronautics.Google Scholar
Zarri, A., Dell’Erba, E., Munters, W. & Schram, C. 2022 Aeroacoustic installation effects in multi-rotorcraft: numerical investigations of a small-size drone model. Aerosp. Sci. Technol. 128, 107762.10.1016/j.ast.2022.107762CrossRefGoogle Scholar
Zhong, S., Zhou, P., Chen, W., Jiang, H., Wu, H. & Zhang, X. 2023 An investigation of rotor aeroacoustics with unsteady motions and uncertainty factors. J. Fluid Mech. 956, A16.10.1017/jfm.2022.1097CrossRefGoogle Scholar