Skip to main content Accessibility help
×
×
Home

On the acoustic levitation stability behaviour of spherical and ellipsoidal particles

  • D. Foresti (a1), M. Nabavi (a1) and D. Poulikakos (a1)

Abstract

We present here an in-depth analysis of particle levitation stability and the role of the radial and axial forces exerted on fixed spherical and ellipsoidal particles levitated in an axisymmetric acoustic levitator, over a wide range of particle sizes and surrounding medium viscosities. We show that the stability behaviour of a levitated particle in an axisymmetric levitator is unequivocally connected to the radial forces: the loss of levitation stability is always due to the change of the radial force sign from positive to negative. It is found that the axial force exerted on a sphere of radius increases with increasing viscosity for ( is the acoustic wavelength), with the viscous contribution of this force scaling with the inverse of the sphere radius. The axial force decreases with increasing viscosity for spheres with . The radial force, on the other hand, decreases monotonically with increasing viscosity. The radial and axial forces exerted on an ellipsoidal particle are larger than those exerted on a volume-equivalent sphere, up to the point where the ellipsoid starts to act as an obstacle to the formation of the standing wave in the levitator chamber.

Copyright

Corresponding author

Email address for correspondence: dpoulikakos@ethz.ch

References

Hide All
1. Andrade, M. A. B., Buiochi, F. & Adamowski, J. C. 2010 Finite element analysis and optimization of a single-axis acoustic levitator. IEEE Trans. Ultrason. Ferroelectr. 57, 469479.
2. Annamalai, P., Trinh, E. & Wang, T. G. 1985 Experimental study of the oscillations of a rotating drop. J. Fluid Mech. 158, 317327.
3. Barmatz, M. & Collas, P. 1985 Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. J. Acoust. Soc. Am. 77, 928945.
4. Barrios, G. & Rechtman, R. 2008 Dynamics of an acoustically levitated particle using the lattice Boltzmann method. J. Fluid Mech. 596, 191200.
5. Bjelobrk, N., Foresti, D., Dorrestijn, M., Nabavi, M. & Poulikakos, D. 2010 Contactless transport of acoustically levitated particles. Appl. Phys. Lett. 97, 161904.
6. Bruus, H., Dual, J., Hawkes, J., Hill, M., Laurell, T., Nilsson, J., Radel, S., Sadhal, S. & Wiklund, M. 2011 Forthcoming lab on a chip tutorial series on acoustofluidics: Acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation lab chip. Lab on a Chip 11, 35793580.
7. Busse, F. H. 1984 Oscillations of a rotating liquid-drop. J. Fluid Mech. 142, 18.
8. Danilov, S. D. & Mironov, M. A. 2000 Mean force on a small sphere in a sound field in a viscous fluid. J. Acoust. Soc. Am. 107, 143153.
9. Doinikov, A. A. 1994 Acoustic radiation pressure on a compressible sphere in a viscous fluid. J. Fluid Mech. 267, 121.
10. Doinikov, A. A. 1997 Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. Part 2. Force on a rigid sphere. J. Acoust. Soc. Am. 101, 722730.
11. Foresti, D., Bjelobrk, N., Nabavi, M. & Poulikakos, D. 2011 Investigation of a line-focused acoustic levitation for contactless transport of particles. J. Appl. Phys. 109, 093503.
12. Foresti, D., Nabavi, M. & Poulikakos, D. 2012 Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator. J. Acoust. Soc. Am. 131, 10291038.
13. Haydock, D. 2005 Lattice boltzmann simulations of the time-averaged forces on a cylinder in a sound field. J. Phys. A: Math Gen. 38, 32653277.
14. King, L. V. 1934 On the acoustic radiation pressure on spheres. Proc. R. Soc. Lond. A. 147, 212240.
15. Koyama, D. & Nakamura, K. 2010 Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector. IEEE Trans. Ultrason. Ferroelectr. 57, 11521159.
16. Kozuka, T., Yasui, K., Tuziuti, T., Towata, A. & Iida, Y. 2008 Acoustic standing-wave field for manipulation in air. Japan J. Appl. Phys. 47, 43364338.
17. Lee, C. P., Anilkumar, A. V. & Wang, T. G. 1991 Static shape of an acoustically levitated drop with wave-drop interaction. Phys. Fluids A 3, 24972515.
18. Lee, C. P. & Wang, T. G. 1990 Outer acoustic streaming. J. Acoust. Soc. Am. 88, 23672375.
19. Lierke, E. G. 2002 Deformation and displacement of liquid drops in an optimized acoustic standing wave levitator. Acta Acust. United Ac. 88, 206217.
20. Lierke, E. G. & Holitzner, L. 2008 Perspectives of an acoustic-electrostatic/electrodynamic hybrid levitator for small fluid and solid samples. Meas. Sci. Technol. 19, 115803.
21. Rednikov, A. Y., Zhao, H., Sadhal, S. S. & Trinh, E. H. 2006 Steady streaming around a spherical drop displaced from the velocity antinode in an acoustic levitation field. Q. J. Mech. Appl. Maths 59, 377397.
22. Rudnick, J. & Barmatz, M. 1990 Oscillational instabilities in single-mode acoustic levitators. J. Acoust. Soc. Am. 87, 8192.
23. Trinh, E. H., Thiessen, D. B. & Holt, R. G. 1998 Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: experimental results. J. Fluid Mech. 364, 253272.
24. Vandaele, V. 2011 Contactless handling for micro-assembly: acoustic levitation, PhD thesis.
25. Vandaele, V., Delchambre, A. & Lambert, P. 2011 Acoustic wave levitation: handling of components. J. Appl. Phys. 109, 124901.
26. Wang, J. T. & Dual, J. 2009 Numerical simulations for the time-averaged acoustic forces acting on rigid cylinders in ideal and viscous fluids. J. Phys. A – Math. Theor. 42.
27. Xie, W. J. & Wei, B. 2001 Parametric study of single-axis acoustic levitation. Appl. Phys. Lett. 79, 881883.
28. Xie, W. J. & Wei, B. 2004 Dynamics of acoustically levitated disk samples. Phys. Rev. E 70, 046611.
29. Yarin, A. L., Pfaffenlehner, M. & Tropea, C. 1998 On the acoustic levitation of droplet. J. Fluid Mech. 356, 6591.
30. Yarin, A. L., Weiss, D. A., Brenn, G. & Rensink, D. 2002 Acoustically levitated drops: drop oscillation and break-up driven by ultrasound modulation. Intl J. Multiphase Flow 28, 887910.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
PDF
Supplementary materials

Foresti et al. supplementary material
Appendices

 PDF (2.1 MB)
2.1 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed