Skip to main content
×
×
Home

On the Beltramian motion of the bidirectional vortex in a conical cyclone

  • Timothy A. Barber (a1) and Joseph Majdalani (a1)
Abstract

In this work, an exact Eulerian model is used to describe the steady-state motion of a bidirectional vortex in a conical chamber. This particular model is applicable to idealized representations of cyclone separators and liquid rocket engines with slowly expanding chamber cross-sections. The corresponding bulk motion is assumed to be non-reactive, rotational, inviscid and incompressible. Then, following Bloor & Ingham (J. Fluid Mech., vol. 178, 1987, pp. 507–519), the spherical Bragg–Hawthorne equation is used to construct a mathematical model that connects the solution to the swirl number and the cone divergence angle. Consequently, a self-similar formulation is obtained independently of the cone’s finite body length. This enables us to characterize the problem using closed-form approximations of the principal flow variables. Among the cyclonic parameters of interest, the mantle divergence angle and the maximum cross-flow velocity are obtained explicitly. The mantle consists of a spinning cone that separates the circumferential inflow region from the central outflow. This interfacial layer bisects the fluid domain at approximately 60 per cent of the cone’s divergence half-angle. Its accurate determination is proven asymptotically using two different criteria, one being preferred by experimentalists. Finally, recognizing that the flow in question is of the Beltramian type, results are systematically described over a range of cone angles and spatial locations in both spherical and cylindrical coordinates; they are also compared to available experimental and numerical data.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On the Beltramian motion of the bidirectional vortex in a conical cyclone
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On the Beltramian motion of the bidirectional vortex in a conical cyclone
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On the Beltramian motion of the bidirectional vortex in a conical cyclone
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: joe.majdalani@auburn.edu
Footnotes
Hide All

Present address: CSRA Inc., Huntsville, AL 35806, USA.

Footnotes
References
Hide All
Alexander, R. M. 1949 Fundamentals of cyclone design and operation. In Proceedings of the Australasian Institute of Mining and Metallurgy, pp. 203–228; N.S., Nos., 152–153. Australasian Institute of Mining and Metallurgy.
Avci, A. & Karagoz, I. 2003 Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. J. Aero. Sci. 34 (7), 937955.
Barth, W. 1956 Berechnung und Auslegung von Zyklonabscheidern aufgrund neuerer Untersuchungen (Design and layout of the cyclone separator on the basis of new investigations). Brennstoff-Warme-Kraft 8 (1), 19.
Bloor, M. I. G. & Ingham, D. B. 1973 Theoretical investigation of the flow in a conical hydrocyclone. Trans. Inst. Chem. Engrs 51 (1), 3641.
Bloor, M. I. G. & Ingham, D. B. 1987 The flow in industrial cyclones. J. Fluid Mech. 178, 507519.
Boysan, F., Ayers, W. H. & Swithenbank, J. 1982 A fundamental mathematical modelling approach to cyclone design. Chem. Engng Res. Des. 60, 222230.
Bradley, D. 1965 The Hydrocyclone. Pergamon.
Bradley, D. & Pulling, D. J. 1959 Flow patterns in the hydraulic cyclone and their interpretation in terms of performance. Trans. Inst. Chem. Engrs 37, 3445.
Bragg, S. L. & Hawthorne, W. R. 1950 Some exact solutions of the flow through annular cascade actuator disks. J. Aero. Sci. 17 (4), 243249.
Chesnokov, Yu. G., Bauman, A. V. & Flisyuk, O. M. 2006 Calculation of the velocity field of a fluid in a hydrocyclone. Russian J. Appl. Chem. 79 (5), 774777.
Chiaverini, M. J., Malecki, M. J., Sauer, J. A., Knuth, W. H. & Majdalani, J. 2003 Vortex thrust chamber testing and analysis for O2-H2 propulsion applications. In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL. AIAA Paper 2003-4473.
Chu, L.-Y. & Chen, W.-M. 1993 Research on the motion of solid particles in a hydrocyclone. Separation Sci. Technol. 28 (10), 18751886.
Concha, F. 2007 Flow pattern in hydrocyclones. Kona-Powder Particle 25, 97132.
Concha, F., Barrientos, A., Munoz, L., Bustamante, O. & Castro, O. 1996 A phenomenological model of a hydrocyclone. In International Conference on Hydrocyclones ’96 (ed. Claxton, D., Svarovsky, L. & Thew, M. T.), pp. 6382. MEP Ltd.
Cortes, C. & Gil, A. 2007 Modeling the gas and particle flow inside cyclone separators. Prog. Energy Combust. Sci. 33 (5), 409452.
Dabir, B. & Petty, C. A. 1986 Measurements of mean velocity profiles in a hydrocyclone using laser doppler anemometry. Chem. Engng Commun. 48 (4), 377388.
Derksen, J. J. 2003 Separation performance predictions of a Stairmand high-efficiency cyclone. Fluid Mech. Transp. Phenom. 49, 13591371.
Derksen, J. J. & van den Akker, H. E. A. 2000 Simulation of vortex core precession in a reverse-flow cyclone. AIChE J. 46 (7), 13171331.
Derksen, J. J., van den Akker, H. E. A. & Sundaresan, S. 2008 Two-way coupled large-eddy simulations of the gas–solid flow in cyclone separators. AIChE J. 54 (4), 872885.
Dietz, P. W. 1981 Collection efficiency of cyclone separators. AIChE J. 27 (6), 888892.
Escudier, M. P. 1987 Confined vortices in flow machinery. Annu. Rev. Fluid Mech. 19, 2752.
Fang, D., Majdalani, J. & Chiaverini, M. J. 2003 Simulation of the cold-wall swirl driven combustion chamber. In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL. AIAA Paper 2003-5055.
Fontein, F. J. & Dijksman, C. 1953 Recent Developments in Mineral Dressing. Institution of Mining and Metallurgy.
Harvey, J. K. 1962 Some observations of the vortex breakdown phenomenon. J. Fluid Mech. 14, 585592.
Hoekstra, A. J., Derksen, J. J. & van den Akker, H. E. A. 1999 An experimental and numerical study of turbulent swirling flow in gas cyclones. Chem. Engng Sci. 54 (13), 20552065.
Hoffmann, A. C. & Stein, L. E. 2008 Gas Cyclones and Swirl Tubes, 2nd edn. Springer.
Hsieh, K. T. & Rajamani, R. K. 1988 Phenomenological model of the hydrocyclone: model development and verification for single-phase flow. Intl J. Miner. Process. 22 (1–4), 223237.
Hsieh, K. T. & Rajamani, R. K. 1991 Mathematical model of the hydrocyclone based on physics of fluid flow. AIChE J. 37 (5), 735746.
Hu, L. Y., Zhou, L. X., Zhang, J. & Shi, M. X. 2005 Studies of strongly swirling flows in the full space of a volute cyclone separator. AIChE J. 51 (3), 740749.
Iozia, D. L. & Leith, D. 1989 Effect of cyclone dimensions on gas flow pattern and collection efficiency. Aerosol Sci. Technol. 10 (3), 491500.
Kelsall, D. F. 1952 A study of the motion of solid particles in a hydraulic cyclone. Trans. Inst. Chem. Engrs 30, 87103.
Kelsall, D. F. 1953 A further study of the hydraulic cyclone. Chem. Engng Sci. 2 (6), 254272.
Knowles, S. R., Woods, D. R. & Feuerstein, I. A. 1973 The velocity distribution within a hydrocyclone operating without an air core. Can. J. Chem. Engng 51 (3), 263271.
Knuth, W. H., Bemowski, P. A., Gramer, D. J., Majdalani, J. & Rothbauer, W. J.1996 Gas-fed, vortex injection hybrid rocket engine. SBIR Phase I, NASA Final Technical Contract no. NAS 8-40679. Orbital Technologies Corporation, Madison, Wisconsin.
Knuth, W. H., Chiaverini, M. J., Sauer, J. A. & Gramer, D. J. 2002 Solid-fuel regression rate behavior of vortex hybrid rocket engines. J. Propul. Power 18 (3), 600609.
Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221246.
Leibovich, S. 1984 Vortex stability and breakdown: survey and extension. AIAA J. 22 (9), 11921206.
Leith, D. & Licht, W. 1972 The collection efficiency of cyclone type particle collectors – a new theoretical approach. AIChE Symposium Series 68 (126), 196206.
Leith, D. & Mehta, D. 1973 Cyclone performance and design. Atmos. Environ. 7 (5), 527549.
Li, P. M., Lin, S. & Vatistas, G. H. 1987 Predicting collection efficiency of separation cyclones: a momentum analysis. Can. J. Chem. Engng 65 (5), 730735.
ter Linden, A. J. 1949 Investigations into cyclone dust collectors. Proc. Inst. Mech. Engrs 160, 233251.
Luo, Q. A., Deng, C. L., Xu, J. R., Yu, L. X. & Xiong, G. G. 1989 Comparison of the performance of water-sealed and commercial hydrocyclones. Intl J. Miner. Process. 25 (3–4), 297310.
Majdalani, J. 2007 Vortex Injection Hybrid Rockets, chap. 6, pp. 247276. AIAA Progress in Astronautics and Aeronautics.
Majdalani, J. 2012 Helical solutions of the bidirectional vortex in a cylindrical cyclone: Beltramian and Trkalian motions. Fluid Dyn. Res. 44 (6), 065506.
Majdalani, J. & Chiaverini, M. J. 2017 Characterization of GO2-GH2 simulations of a miniature vortex combustion cold wall chamber. J. Propul. Power 33 (2), 387397.
Majdalani, J. & Rienstra, S. W. 2007 On the bidirectional vortex and other similarity solutions in spherical coordinates. Z. Angew. Math. Mech. 58 (2), 289308.
Mikhaylov, P. M. & Romenskiy, A. A. 1974 On calculation of flow dynamics in liquid cyclones. Fluid Mech. – Sov. Res. 3 (1), 154159.
Monredon, T. C., Hsieh, K. T. & Rajamani, R. K. 1992 Fluid flow model of the hydrocyclone: an investigation of device dimensions. Intl J. Miner. Process. 35 (1–2), 6583.
Mothes, H. & Löffler, F. 1985 Motion and deposition of particles in cyclones. German Chem. Enging 8 (4), 223233.
Peng, W., Hoffmann, A. C., Boot, P. J. A. J., Udding, A., Dries, H. W. A., Ekker, A. & Kater, J. 2002 Flow pattern in reverse-flow centrifugal separators. Powder Technol. 127 (3), 212222.
Peng, W., Hoffmann, A. C. & Dries, H. 2004 Separation characteristics of swirl-tube dust separators. AIChE J. 50 (1), 8796.
Pericleous, K. A. 1987 Mathematical simulation of hydrocyclones. Appl. Math. Model. 11 (4), 242255.
Pervov, A. A. 1974 Investigation of velocity and pressure zones in SDK-TsN-33 and SK-TsN-34 cyclones. Chem. Petroleum Engng 10 (10), 898900.
Rom, C. J.2006 Flow field and near nozzle fuel spray characterizations for a cold flowing vortex engine. MS thesis, University of Wisconsin, Madison, Department of Engineering Mechanics and Engineering Physics.
Rom, C. J., Anderson, M. H. & Chiaverini, M. J. 2004 Cold flow analysis of a vortex chamber engine for gelled propellant combustor applications. In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, FL. AIAA Paper 2004-3359.
Sauer, J. A., Knuth, W. H., Malecki, M. J., Chiaverini, M. J. & Hall, C. D. 2002 Development of a LOX/RP-1 vortex combustion cold-wall thrust chamber assembly. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, IN. AIAA Paper 2002-4144.
Shepherd, C. B. & Lapple, C. E. 1939 Flow pattern and pressure drop in cyclone dust collectors. Ind. Engng Chem. 31 (8), 972984.
Shepherd, C. B. & Lapple, C. E. 1940 Flow pattern and pressure drop in cyclone dust collectors: cyclone without inlet vane. Ind. Engng Chem. 32 (9), 12461248.
Smith, J. L. 1962a An analysis of the vortex flow in the cyclone separator. Trans. ASME J. Basic Engng 84D (4), 609618.
Smith, J. L. 1962b An experimental study of the vortex in the cyclone separator. Trans ASME J. Basic Engng 84 (4), 602608.
Stairmand, C. J. 1951 The design and performance of cyclone separators. Trans. Inst. Chem. Engrs 29, 356383.
Vyas, A. B. & Majdalani, J. 2006 Exact solution of the bidirectional vortex. AIAA J. 44 (10), 22082216.
Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. 2006 Vorticity and Vortex Dynamics. Springer.
Xiang, R., Park, S. H. & Lee, K. W. 2001 Effects of cone dimension on cyclone performance. J. Aero. Sci. 32 (4), 549561.
Zhou, L. X. & Soo, S. L. 1990 Gas–solid flow and collection of solids in a cyclone separator. Powder Technol. 63 (1), 4553.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 76
Total number of PDF views: 190 *
Loading metrics...

Abstract views

Total abstract views: 305 *
Loading metrics...

* Views captured on Cambridge Core between 12th September 2017 - 19th July 2018. This data will be updated every 24 hours.