Skip to main content Accessibility help
×
Home

On the coherent structures and stability properties of a leading-edge separated aerofoil with turbulent recirculation

  • V. Kitsios (a1) (a2), L. Cordier (a1), J.-P. Bonnet (a1), A. Ooi (a2) and J. Soria (a3)...

Abstract

The present study is motivated by a need to produce stability modes to assist in the understanding and control of unsteady separated flows. The flow configuration is a NACA 0015 aerofoil with laminar leading-edge separation and turbulent recirculation. In previous water tunnel experiments, this flow configuration was measured in an unperturbed (uncontrolled) separated state, and a harmonically perturbed (controlled) reattached state. This study presents numerical data of the unperturbed case, and recovers stability modes to describe the evolution of perturbations in this environment. The unperturbed flow is numerically generated using large eddy simulation. Its temporal properties are quantified via a Fourier analysis of the velocity time history at selected points in space. The leading-edge shear layer instability is characterized by instantaneous vortex structures, and the bluff body shedding is illustrated by proper orthogonal decomposition modes. Statistical measures of the velocity field agree well with the water tunnel measurements. Finally a stability analysis is undertaken using a triple decomposition to distinguish between the time averaged field, the unsteady scales of motion, and a coherent wave (perturbation). This analysis identifies that perturbations in the region immediately downstream of the separated shear layer have the highest spatial growth rates. The associated frequency is of the order of the sub-harmonic of the shear layer instability.

Copyright

Corresponding author

Email address for correspondence: vassili.kitsios@csiro.au

Footnotes

Hide All

Present address: Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale 3195, Australia.

Footnotes

References

Hide All
1. Amitay, M., Smith, D. R., Kibens, V., Parekh, D. E. & Glezer, A. 2001 Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J. 39 (3), 361370.
2. Anderson, E., Bai, Z., Bischof, C. H., Blackford, S., Demmel, J. W., Dongarra, J. J., Croz, J. J. Du, Greenbaum, A., Hammarling, S. J., McKenney, A. & Sorensen, D. C. 1999 LAPACK Users’ Guide, 3rd edn. SIAM.
3. Bergmann, M. & Cordier, L. 2008 Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comput. Phys. 227, 78137840.
4. Cordier, L. & Bergmann, M. 2008 Proper Orthogonal Decomposition: an overview. In Lecture Series 2008 on Post-processing of Experimental and Numerical Data. Von Kármán Institute for Fluid Dynamics.
5. Frohlich, J., Mellen, P. C., Rodi, W., Temmerman, L. & Leschziner, A. 2005 Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 1966.
6. Gaster, M. 1968 Growth of disturbances in both space and time. Phys. Fluids 11 (4), 723727.
7. Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.
8. Gilarranz, J. L., Traub, L. & Rediniotis, O. K. 2005 A new class of synthetic jet actuators – part II: application to flow separation control. Trans. ASME: J. Fluids Engng 127, 377387.
9. Greenblatt, D. & Wygnanski, I. J. 2000 The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36, 487545.
10. Grosch, C. E. & Salwen, H. 1978 The continuous spectrum of the Orr–Sommerfeld equation. Part 1. The spectrum and eigenfunctions. J. Fluid Mech. 87, 3354.
11. Gross, A. & Fasel, H. F. 2005 Numerical investigation of low-pressure turbine blade separation control. AIAA J. 43, 25142526.
12. Ho, C. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.
13. Hoarau, Y., Braza, M., Ventikos, Y., Faghani, D. & Tzabiras, G. 2003 Organized modes and the three-dimensional transition to turbulence in the incompressible flow around a NACA 0012 wing. J. Fluid Mech. 496, 6372.
14. Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, pp. 193–208.
15. Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanisms of an organised wave in turbulent shear flow. J. Fluid Mech. 41 (2), 241258.
16. Kitsios, V. 2010 Recovery of fluid mechanical modes in unsteady separated flows. PhD thesis, The University of Melbourne and Université de Poitiers.
17. Kitsios, V., Cordier, L., Bonnet, J.-P., Ooi, A. & Soria, J. 2010 Development of a non-linear eddy viscosity closure for the triple decomposition stability analysis of a turbulent channel. J. Fluid Mech. 664, 74107.
18. Kitsios, V., Rodriguez, D., Ooi, A., Theofilis, V. & Soria, J. 2009 BiGlobal stability analysis in curvilinear coordinates of massively separated lifting bodies. J. Comput. Phys. 228, 71817196.
19. Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4 (3), 633635.
20. Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large eddy simulations in complex geometries. J. Comput. Phys. 197, 215240.
21. Mittal, R., Kotapati, R. B. & Cattafesta, L. N. III 2005 Numerical study of resonant interactions and flow control in a canonical separated flow. In AIAA 43rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada.
22. Noack, B. R. & Eckelmann, H. 1994 A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.
23. Noack, B. R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P. & Tadmor, G. 2008 Finite time thermodynamics of unsteady fluid flows. J. Non-Equilib. Thermodyn. 33, 103148.
24. Orr, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part 1: a perfect liquid; Part 2: a viscous liquid. Proc. R. Irish Acad. A 27, 968 and 69–138.
25. Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19, 125155.
26. Piomelli, U. & Chasnov, J. R. 1996 Large-eddy simulations: theory and applications. In Transition and Turbulence Modelling (ed. Hallbak, M., Henningson, D. S., Johansson, A. V. & Alfredson, P. H. ), pp. 269331. Kluwer.
27. Pope, S. B. 2008 Turbulent Flows. Cambridge University Press.
28. Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanisms of an organised wave in turbulent shear flow. Part 3. Theoretical models and comparison with experiments. J. Fluid Mech. 54, 263288.
29. Roshko, A. 1954 On the development of turbulent wakes from vortex streets. NACA Tech. Rep. 1191.
30. Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev. 91 (3), 99164.
31. Smith, D., Amitay, M., Kibens, V., Parekh, D. & Glezer, A. 1998 Modification of lifting body aerodynamics using synthetic jet actuators. AIAA Paper 98-0209.
32. Sommerfeld, A. 1908 Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen. In Atti del IV. Congresso Internazionale dei Matematici III, pp. 116124. Rome.
33. Soria, J. 1996 An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp. Therm. Fluid Sci. 12, 221233.
34. Tian, Y. & Cattafesta, L. N. III 2006 Adaptive control of separated flow. AIAA Paper 2006-1401.
35. Tuck, A. & Soria, J. 2008 Separation control on a NACA 0015 airfoil using a 2D micro ZNMF jet. Air. Engng Aero. Tech. 80 (2), 175180.
36. You, D., Ham, F. & Moin, P. 2008 Discrete conservation principles in large-eddy simulation with application to separation control over an airfoil. Phys. Fluids 20 (101515), 111.
37. Zhou, Y., Alam, M. M., Yang, H. X., Guo, H. & Wood, D. H. 2011 Fluid forces on a very low Reynolds number airfoil and their prediction. Intl J. Heat Fluid Flow 32, 329339.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

On the coherent structures and stability properties of a leading-edge separated aerofoil with turbulent recirculation

  • V. Kitsios (a1) (a2), L. Cordier (a1), J.-P. Bonnet (a1), A. Ooi (a2) and J. Soria (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed