Skip to main content

On the excitation of edge waves on beaches

  • A. A. Minzoni (a1) and G. B. Whitham (a1)

The excitation of standing edge waves of frequency ½ω by a normally incident wave train of frequency ω has been discussed previously (Guza & Davis 1974; Guza & Inman 1975; Guza & Bowen 1976) on the basis of shallow-water theory. Here the problem is formulated in the full water-wave theory without making the shallow-water approximation and solved for beach angles β = π/2N, where N is an integer. The work confirms the shallow-water results in the limit N [Gt ] 1, shows the effect of larger beach angles and allows a more complete discussion of some aspects of the problem.

Hide All
Abramowitz, M. & Stegun, I. 1965 Handbook of Mathematical Functions. Dover.
Courant, R. & Hilbert, D. 1953 Methods of Mathematical Physics, vol. 1. Interscience.
Friedrichs, K. O. 1948 Comm. Pure Appl. Math. 1, 109134.
Guza, R. T. & Bowen, A. J. 1975 J. Geophys. Res. 80, 45294534.
Guza, R. T. & Bowen, A. J. 1976 J. Mar. Res. 34, 269293.
Guza, R. T. & Davis, R. E. 1974 J. Geophys. Res. 79, 12851291.
Guza, R. T. & Inman, D. 1975 J. Geophys. Res. 80, 29973011.
Hanson, E. T. 1926 Proc. Roy. Soc. A 111, 491529.
Minzoni, A. A. 1976 J. Fluid Mech. 74, 369375.
Stoker, J. J. 1957 Water Waves. Interscience.
Whitham, G. B. 1976 J. Fluid Mech. 74, 353368.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 98 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.