Skip to main content Accessibility help

On the instability of a free viscous rim

  • ILIA V. ROISMAN (a1)


This paper is devoted to the theoretical description of the dynamics of a rim formed by capillary forces at the edge of a free, thin liquid sheet. The rim dynamics are described using a quasi-one-dimensional approach accounting for the inertia of the liquid in the rim and for the liquid flow entering the rim from the sheet, surface tension and viscous stresses. The governing equations are derived from the mass, momentum and moment-of-momentum-balance equations of the rim. The theory provides a basis from which to analyse the linear stability of a straight line rim bounding a planar liquid sheet. The combined effect of the axisymmetric disturbances of the radius of the rim cross-section as well as of the transverse disturbances of the rim centreline is considered. The effect of the viscosity, relative film thickness and rim deceleration are investigated. The predicted wavelength of the most unstable mode is always very similar to the Rayleigh wavelength of the instability of an infinite cylindrical jet. This prediction is confirmed by various experimental data found in the literature. The maximum rate of growth of rim disturbances depends on all the parameters of the problem; however, the most pronounced effect can be attributed to the rim deceleration. This conclusion is confirmed by nonlinear simulations of rim deformation.


Corresponding author

Email address for correspondence:


Hide All
Ashgriz, N. & Poo, J. Y. 1990 Coalescence and separation in binary collision of liquid drops. J. Fluid Mech. 221, 183204.
Bagué, A., Zaleski, S. & Josserand, C. 2007 Droplet formation at the edge of a liquid sheet. In Proceedings of the Sixth International Conference on Multiphase Flow (ICMF 2007) (ed. Sommerfeld, M. & Tropea, C.), Leipzig, Germany. ICMF.
Bartolo, D., Josserand, C. & Bonn, D. 2005 Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J. Fluid Mech. 545, 329338.
Boussinesq, J. 1869 a Théories des expériences de Savart, sur la forme que prend une veine liquide après s'être choquée contre un plan circulaire. C. R. Acad. Sci. Paris 69, 4548.
Boussinesq, J. 1869 b Théories des expériences de Savart, sur la forme que prend une veine liquide après s'être choquée contre un plan circulaire (suite). C. R. Acad. Sci. Paris 69, 128131.
Brenn, G., Valkovska, D. & Danov, K. D. 2001 The formation of satellite droplets by unstable binary drop collisions. Phys. Fluids 13, 2463.
Brenner, M. P., Lister, J. R. & Stone, H. A. 1996 Pinching threads, singularities and the number 0.0304. . . Phys. Fluids 8, 28272836.
Brochard-Wyart, F. & De Gennes, P.-G. 1997 Shocks in an inertial dewetting process. C. R. Acad. Sci. Paris IIb 324, 257260.
Brochard-Wyart, F., Di Meglio, J. M. & Quéré, D. 1987 Dewetting: growth of dry regions from a film covering a flat solid or a fiber. C. R. Acad. Sci. Paris II 304, 553558.
Bush, J. W. M. & Hasha, A. E. 2004 On the collision of laminar jets: fluid chains and fishbones. J. Fluid Mech. 511, 285310.
Clanet, C. 2001 Dynamics and stability of water bells. J. Fluid Mech. 430, 111147.
Clanet, C. & Villermaux, E. 2002 Life of a smooth liquid sheet. J. Fluid Mech. 462, 307340.
Clark, C. J. & Dombrowski, N. 1972 On the formation of drops from the rims of fan spray sheets. J. Aerosol. Sci. 3 (3), 173183.
Cossali, G. E., Marengo, M., Coghe, A. & Zhdanov, S. 2004 The role of time in single drop splash on thin film. Exp. Fluids 36, 888900.
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.
Debrégeas, G., Martin, P. & Brochard-Wyart, F. 1995 Viscous bursting of suspended films. Phys. Rev. Lett. 75, 38863889.
Deegan, R. D., Brunet, P. & Eggers, J. 2008 Rayleigh–Plateau instability causes the crown splash. arXiv:0806.3050.
Eggers, J. 1997 Nonlinear dynamics and breakup of free surface flows. Rev. Mod. Phys. 69, 865929.
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.
Entov, V. M. 1982 On the dynamics of films of viscous and elastoviscous liquids. Arch. Mech. Stosow 34 (4), 395407.
Entov, V. M., Rozhkov, A. N., Feizkhanov, U. F. & Yarin, A. L. 1986 Dynamics of liquid films: plane films with free rims. J. Appl. Mech. Tech. Phys. 27 (1), 4147.
Entov, V. M. & Yarin, A. L. 1984 The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91111.
Frankel, I. & Weihs, D. 1985 Stability of a capillary jet with linearly increasing axial velocity (with application to shaped charges). J. Fluid. Mech. 155, 289307.
Fullana, J. M. & Zaleski, S. 1999 Stability of a growing end rim in a liquid sheet of uniform thickness. Phys. Fluids 11 (5), 952954.
Gorokhovski, M. & Herrmann, M. 2008 Modeling primary atomization. Annu. Rev. Fluid Mech. 40, 343366.
Hsiang, L.-P. & Faeth, G. M. 1992 Near-limit drop deformation and secondary breakup. Int. J. Multiph. Flow 18, 635.
Hsiang, L.-P. & Faeth, G. M. 1995 Drop deformation and breakup due to shock wave and steady disturbances. Intl J. Multiph. Flow 21, 545.
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15, 1650.
Khakhar, D. V. & Ottino, J. M. 1987 Breakup of liquid threads in linear flows. Intl J. Multiph. Flow 13, 7186.
Krechetnikov, R. & Homsy, G. M. 2009 Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331, 555559.
Lin, S. P. & Reitz, R. D. 1998 Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85105.
Rayleigh, Lord 1879 On the instability of jets. Proc. Lond. Math. Soc. 10, 429.
Roisman, I. V. 2004 Dynamics of inertia dominated binary drop collisions. Phys. Fluids 16, 34383449.
Roisman, I. V., Gambaryan-Roisman, T., Kyriopoulos, O., Stephan, P. & Tropea, C. 2007 Breakup and atomization of a stretching crown. Phys. Rev. E 76, 026302.
Roisman, I. V., Horvat, K. & Tropea, C. 2006 Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys. Fluids 18, 102104.
Roisman, I. V., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458, 14111430.
Roisman, I. V. & Tropea, C. 2002 Impact of a drop onto a wetted wall: description of crown formation and propagation. J. Fluid Mech. 472, 373397.
Roth, C. B., Deh, B., Nickel, B. G. & Dutcher, J. R. 2005 Evidence of convective constraint release during hole growth in freely standing polystyrene films at low temperatures. Phys. Rev. E 72, 021802.
Rozhkov, A., Prunet-Foch, B. & Vignes-Adler, M. 2002 Impact of water drops on small targets. Phys. Fluids 14, 34853501.
Savva, N. & Bush, J. W. M. 2009 Viscous sheet retraction. J. Fluid Mech. 626, 211240.
Taylor, G. I. 1959 a The dynamics of thin sheets of fluid. Part 1. Water bells. Proc. R. Soc. Lond. A 253 (1274), 289295.
Taylor, G. I. 1959 b The dynamics of thin sheets of fluid. Part 2. Waves on fluid sheets. Proc. R. Soc. Lond. A 263, 296312.
Taylor, G. I. 1959 c The dynamics of thin sheets of fluid. Part 3. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253 (1274), 289295.
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.
Tomotika, S. 1935 On the stability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150, 322337.
Vander Wal, R. L., Berger, G. M. & Mozes, S. D. 2005 Droplets splashing upon films of the same fluid of various depths. Exp. Fluids 40 (1), 3352.
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419–46.
Weber, C. 1931 Zum Zerfall eines Flüssigkeitsstrahles. Z. Angew. Math. Mech. 2, 136154.
Yarin, A. L. 1993 Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman & Wiley.
Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed