Skip to main content Accessibility help
×
Home

On the limiting Stokes wave of extreme height in arbitrary water depth

  • Xiaoxu Zhong (a1) and Shijun Liao (a2) (a3) (a1)

Abstract

Both Schwartz (J. Fluid Mech., vol. 62 (3), 1974, pp. 553–578) and Cokelet (Phil. Trans. R. Soc. Lond., vol. 286 (1335), 1977, pp. 183–230) failed to gain convergent results for limiting Stokes waves in extremely shallow water by means of perturbation methods, even with the aid of extrapolation techniques such as the Padé approximant. In particular, it is extremely difficult for traditional analytic/numerical approaches to present the wave profile of limiting waves with a sharp crest of $120^{\circ }$ included angle first mentioned by Stokes in the 1880s. Thus, traditionally, different wave models are used for waves in different water depths. In this paper, by means of the homotopy analysis method (HAM), an analytic approximation method for highly nonlinear equations, we successfully gain convergent results (and especially the wave profiles) of the limiting Stokes waves with this kind of sharp crest in arbitrary water depth, even including solitary waves of extreme form in extremely shallow water, without using any extrapolation techniques. Therefore, in the frame of the HAM, the Stokes wave can be used as a unified theory for all kinds of waves, including periodic waves in deep and intermediate depths, cnoidal waves in shallow water and solitary waves in extremely shallow water.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On the limiting Stokes wave of extreme height in arbitrary water depth
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On the limiting Stokes wave of extreme height in arbitrary water depth
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On the limiting Stokes wave of extreme height in arbitrary water depth
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: sjliao@sjtu.edu.cn

References

Hide All
Amick, C. J., Fraenkel, L. E. & Toland, J. F. 1982 On the Stokes conjecture for the wave of extreme form. Acta Mathematica 148 (1), 193214.
Balk, A. M. 1996 A lagrangian for water waves. Phys. Fluids 8 (2), 416420.
Byatt-Smith, J. G. B. & Longuet-Higgins, M. S. 1976 On the speed and profile of steep solitary waves. Proc. R. Soc. Lond. A 350 (1661), 175189.
Chandler, G. A. & Graham, I. G. 1993 The computation of water waves modelled by Nekrasov’s equation. SIAM J. Numer. Anal. 30 (4), 10411065.
Chappelear, J. E. 1961 Direct numerical calculation of wave properties. J. Geophys. Res. 66 (2), 501508.
Chen, B. & Saffman, P. G. 1980 Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Maths 62, 121.
Cokelet, E. D. 1977 Steep gravity waves in water of arbitrary uniform depth. Phil. Trans. R. Soc. Lond. 286 (1335), 183230.
Crew, S. C. & Trinh, P. H. 2016 New singularities for Stokes waves. J. Fluid Mech. 798, 256283.
Dallaston, M. C. & Mccue, S. W. 2010 Accurate series solutions for gravity-driven Stokes waves. Phys. Fluids 22 (8), p082104.
Davies, T. V. 1951 The theory of symmetrical gravity waves of finite amplitude. I. Proc. R. Soc. Lond. A 208 (1095), 475486.
Dean, R. G. 1965 Stream function representation of nonlinear ocean waves. J. Geophys. Res. 70 (18), 45614572.
Dyachenko, S. A., Lushnikov, P. M. & Korotkevich, A. O. 2014 Complex singularity of a Stokes wave. J. Expl Theor. Phys. Lett. 98 (11), 675679.
Dyachenko, S. A., Lushnikov, P. M. & Korotkevich, A. O. 2016 Branch cuts of Stokes wave on deep water. Part I: numerical solution and Padé approximation. Stud. Appl. Maths 137 (4), 419472.
Fenton, J. D. 1972 A ninth-order solution for the solitary wave. J. Fluid Mech. 53 (2), 257271.
Fenton, J. D. 1988 The numerical solution of steady water wave problem. Comput. Geosci. 14 (3), 357368.
Fenton, J. D. 1990 Nonlinear wave theories. Ocean Engng Sci. 9, 118.
Grant, M. A. 1973 The singularity at the crest of a finite amplitude progressive Stokes wave. J. Fluid Mech. 59 (2), 257262.
Hedges, T. S. 1995 Regions of validity of analytical wave theories. Ice Proceedings Water Maritime Energy 112 (2), 111114.
Hunter, J. K. & Vanden-Broeck, J. M. 1983 Accurate computations for steep solitary waves. J. Fluid Mech. 136 (136), 6371.
Karabut, E. A. 1998 An approximation for the highest gravity waves on water of finite depth. J. Fluid Mech. 372, 4570.
Kimiaeifar, A., Lund, E., Thomsen, O. T. & Srensen, J. D. 2011 Application of the homotopy analysis method to determine the analytical limit state functions and reliability index for large deflection of a cantilever beam subjected to static co-planar loading. Comput. Maths Applics. 62 (12), 46464655.
Klopman, G. 1990 A note on integral properties of periodic gravity waves in the case of a non-zero mean Eulerian velocity. J. Fluid Mech. 211 (5), 609615.
Korteweg, D. J. & de Vries, G. 1895 On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Phil. Mag. 39, 422443.
Laitone, E. V. 1960 The second approximation to cnoidal and solitary waves. J. Fluid Mech. 9 (3), 430444.
Lenau, C. W. 1966 The solitary wave of maximum amplitude. J. Fluid Mech. 26 (2), 309320.
Liao, S. J.1992 Proposed homotopy analysis techniques for the solution of nonlinear problem. PhD thesis, Shanghai Jiao Tong University.
Liao, S. J. 1999 A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101128.
Liao, S. J. 2003 Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman & Hall/CRC.
Liao, S. J. 2009 Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 14 (4), 983997.
Liao, S. J. 2010 An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15 (8), 20032016.
Liao, S. J. 2011 On the homotopy multiple-variable method and its applications in the interactions of nonlinear gravity waves. Commun. Nonlinear Sci. Numer. Simul. 16 (3), 12741303.
Liao, S. J. 2012 Homotopy Analysis Method in Nonlinear Differential Equations. Springer.
Liao, S. J., Xu, D. L. & Stiassnie, M. 2016 On the steady-state nearly resonant waves. J. Fluid Mech. 794, 175199.
Liu, Z. & Liao, S. J. 2014 Steady-state resonance of multiple wave interactions in deep water. J. Fluid Mech. 742, 664700.
Liu, Z., Xu, D. L., Li, J., Peng, T., Alsaedi, A. & Liao, S. J. 2015 On the existence of steady-state resonant waves in experiments. J. Fluid Mech. 763, 123.
Liu, Z., Xu, D. L. & Liao, S. J. 2017 Mass, momentum and energy flux conservation between linear and nonlinear steady-state wave groups. Phys. Fluids 29, 127104.
Liu, Z., Xu, D. L. & Liao, S. J. 2018 Finite amplitude steady-state wave groups with multiple near resonances in deep water. J. Fluid Mech. 835, 624653.
Longuet-Higgins, M. S. 1975 Integral properties of periodic gravity waves of finite amplitude. Proc. R. Soc. Lond. 342 (1629), 157174.
Longuet-Higgins, M. S. 1978 Some new relations between Stokes’s coefficients in the theory of gravity waves. IMA J. Appl. Maths 22 (3), 261273.
Longuet-Higgins, M. S. 1985 Bifurcation in gravity waves. J. Fluid Mech. 151, 457475.
Longuet-Higgins, M. S. & Fenton, J. D. 1974 On the mass, momentum, energy and circulation of a solitary wave. II. Proc. R. Soc. Lond. A A340, 471493.
Longuet-Higgins, M. S. & Fox, M. J. H. 1978 Theory of the almost-highest wave. Part 2. Matching and analytic extension. J. Fluid Mech. 85 (4), 769786.
Lushnikov, P. M. 2016 Structure and location of branch point singularities for Stokes waves on deep water. J. Fluid Mech. 800, 557594.
Lushnikov, P. M., Dyachenko, S. A. & Silantyev, D. A. 2017 New conformal mapping for adaptive resolving of the complex singularities of Stokes wave. Proc. R. Soc. Lond. A 473, 20170198; doi:10.1098/rspa.2017.0198.
Mastroberardino, A. 2011 Homotopy analysis method applied to electrohydrodynamic flow. Commun. Nonlinear Sci. Numer. Simul. 16 (7), 27302736.
Michell, J. H. 1893 The highest waves in water. Phil. Mag. 36 (5), 430437.
Nekrasov, A. I. 1920 On Stokes’ wave. Isv. Ivanovo-Voznesesk. Politekhn 8189.
Olfe, D. B. & Rottman, J. W. 1980 Some new highest-wave solutions for deep-water waves of permanent form. J. Fluid Mech. 100 (4), 801810.
Plotnikov, P. I. 2002 A proof of the Stokes conjecture in the theory of surface waves*. Stud. Appl. Maths 108 (2), 217244; translated from Dinamika Sploshn. Sredy 57 (1982) 41–76.
Rienecker, M. M. & Fenton, J. D. 1981 A Fourier approximation method for steady water waves. J. Fluid Mech. 104 (104), 119137.
Sardanyés, J., Rodrigues, C., Januário, C., Martins, N., Gil-Gómez, G. & Duarte, J. 2015 Activation of effector immune cells promotes tumor stochastic extinction: a homotopy analysis approach. Appl. Math. Comput. 252, 484495.
Schwartz, L. W.1972 Analytic continuation of Stokes’ expansion for gravity waves. PhD thesis, Stanford University.
Schwartz, L. W. 1974 Computer extension and analytic continuation of Stokes’ expansion for gravity waves. J. Fluid Mech. 62 (3), 553578.
Schwartz, L. W. & Fenton, J. D. 1982 Strongly nonlinear waves. Annu. Rev. Fluid Mech. 14, 3960.
Shanks, D. 1954 Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34 (1), 142.
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.
Stokes, G. G. 1880 Supplement to a paper on the theory of oscillatory waves. Math. Phys. Papers (1), 314326.
Sulem, C., Sulem, P. L. & Frisch, H. 1983 Tracing complex singularities with spectral methods. J. Comput. Phys. 50 (1), 138161.
Tanveer, S. 1991 Singularities in water waves and Rayleigh–Taylor instability. Proc. R. Soc. Lond. A 435 (1893), 137158.
Tulin, M. P. 1983 An exact theory of gravity wave generation by moving bodies, its approximation and its implication. In 14th Symposium on Naval Hydrodynamics, pp. 1951. Academic Press.
Vajravelu, K. & Van Gorder, R. A. 2012 Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer. Springer.
Van Gorder, R. A. & Vajravelu, K. 2008 Analytic and numerical solutions to the Lane–Emden equation. Phys. Lett. A 372, 60606065.
Vanden-Broeck, J. M. 1986 Steep gravity waves: Havelock method revisited. Phys. Fluids 29 (9), 30843085.
Vanden-Broeck, J. M. & Schwartz, L. W. 1979 Numerical computation of steep gravity waves in shallow water. Phys. Fluids 22 (10), 18681871.
Vanden-Broeck, J. M. & Miloh, T. 1995 Computations of steep gravity waves by a refinement of DaviesTulins approximation. SIAM J. Appl. Maths 55 (4), 892903.
Williams, J. M. 1981 Limiting gravity waves in water of finite depth. Phil. Trans. R. Soc. A 302 (1466), 139188.
Witting, J. M.1981 High solitary waves in water: results of calculations. Naval Research Lab Report 8505.
Witting, J. M. & Bergin, J. M.1981 High solitary waves in water: a refined numerical method. Naval Research Lab Report 8504.
Xu, D. L., Lin, Z. L., Liao, S. J. & Stiassnie, M. 2012 On the steady-state fully resonant progressive waves in water of finite depth. J. Fluid Mech. 710, 379418.
Yamada, H. 1957 Highest waves of permanent type on the surface of deep water. Appl. Mech. Res. Rep., Kyushu Univ. 5 (18), 3752.
Yamada, H. & Shiotani, T. 1968 On the highest water waves of permanent type. Bull. Disas. Prey. Res. Inst. 18 (2), 122.
Zhong, X. X. & Liao, S. J. 2017 Analytic solutions of Von Kármán plate under arbitrary uniform pressure – equations in differential form. Stud. Appl. Maths 138, 371400.
Zhong, X. X. & Liao, S. J. 2018 Analytic solutions of Von Kármán plate under arbitrary uniform pressure – equations in integral form. Sci. China Phys. Mech. Astronomy 61, 014611.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed