Skip to main content
×
Home
    • Aa
    • Aa

On the onset of low-Prandtl-number convection in rotating spherical shells: non-slip boundary conditions

  • MARTA NET (a1), FERRAN GARCIA (a1) and JUAN SÁNCHEZ (a1)
Abstract

Accurate numerical computations of the onset of thermal convection in wide rotating spherical shells are presented. Low-Prandtl-number (σ) fluids, and non-slip boundary conditions are considered. It is shown that at small Ekman numbers (E), and very low σ values, the well-known equatorially trapped patterns of convection are superseded by multicellular outer-equatorially-attached modes. As a result, the convection spreads to higher latitudes affecting the body of the fluid, and increasing the internal viscous dissipation. Then, from E < 10−5, the critical Rayleigh number (Rc) fulfils a power-law dependence Rc ~ E−4/3, as happens for moderate and high Prandtl numbers. However, the critical precession frequency (|ωc|) and the critical azimuthal wavenumber (mc) increase discontinuously, jumping when there is a change of the radial and latitudinal structure of the preferred eigenfunction. In addition, the transition between spiralling columnar (SC), and outer-equatorially-attached (OEA) modes in the (σ, E)-space is studied. The evolution of the instability mechanisms with the parameters prevents multicellular modes being selected from σ≳0.023. As a result, and in agreement with other authors, the spiralling columnar patterns of convection are already preferred at the Prandtl number of the liquid metals. It is also found that, out of the rapidly rotating limit, the prograde antisymmetric (with respect to the equator) modes of small mc can be preferred at the onset of the primary instability.

Copyright
References
Hide All
Al-Shamali F., Heimpel M. & Arnou J. 2004 Varying the spherical shell geometry in rotating thermal convection. Geophys. Astrophys. Fluid Dyn. 98, 153169.
Ardes M., Busse F. H. & Wicht J. 1997 Thermal convection in rotating spherical shells. PEPI 99, 5567.
Aubert J., Brito D., Nataf H.-C., Cardin P. & Masson J. P. 2001 A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth Planet. Inter. 128, 5174.
Batiste O., Mercader I., Net M. & Knobloch E. 1999 Onset of oscillatory binary fluid convection in finite containers. PRE 59, 67306741.
Busse F. H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441460.
Busse F. H. & Simitev R. 2004 Inertial convection in rotating fluid spheres. J. Fluid Mech. 498, 2330.
Dormy E., Soward A. M., Jones C. A., Jault D. & Cardin P. 2004 The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 4370.
Ecke R. E., Zhong F. & Knobloch E. 1992 Hopf bifurcation with broken reflection symmetry in rotating Rayleigh–Bénard convection. Europhys. Lett. 19, 177182.
Finlay C. C. & Jackson A. 2003 Equatorially dominated magnetic field change at the surface of the Earth's core. Science 300 (5628), 20842086.
Gillet N., Brito D., Jault D. & Nataf H.-C. 2007 Experimental and numerical studies of convection in a rapidly rotating spherical shell. J. Fluid Mech. 580, 83121.
Herrmann J. & Busse F. H. 1997 Convection in a rotating cylindrical annulus. Part 4. Modulations and transitions to chaos at low Prandtl numbers. J. Fluid Mech. 350, 209229.
Jaletzky M. 1999 Experimental study of rotating cylindrical annulus convection. PhD thesis, University of Bayreuth.
Jones C. A., Soward A. M. & Mussa A. I. 2000 The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech. 405, 157179.
Lehoucq R. B., Sorensen D. C. & Yang C. 1998 ARPACK User's Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.
Li L., Zhang P., Liao X. & Zhang K. 2005 Multiplicity of nonlinear thermal convection in a spherical shell. Phys. Rev. E 71, 016301(1)016301(9).
Pino D., Mercader I. & Net M. 2000 Thermal and inertial modes of convection in a rapidly rotating annulus. Phys. Rev. E 61, 15071517.
Pino D., Net M., Sánchez J. & Mercader I. 2001 Thermal Rossby waves in a rotating annulus: their stability. Phys. Rev. E 63, 056312(1)056312(14).
Plaut E. & Busse F. H. 2002 Low-Prandtl-number convection in a rotating annulus. J. Fluid Mech. 464, 345363.
Plaut E. & Busse F. H. 2005 Multicellular convection in rotating annuli. J. Fluid Mech. 528, 119133.
Roberts P. H. 1968 On the thermal instability of a rotating fluid sphere containing heat sources. Phil. Trans. R. Soc. Lond. A 263, 93117.
Schnaubelt M. & Busse F. H. 1992 Convection in a rotating cylindrical annulus. Part 3. Vacillating and spatially modulated flow. J. Fluid Mech. 245, 155173.
Secco R. A. & Schloessin H. H. 1989 The electrical resistivity of solid and liquid Fe at pressures up to 7 GPa. J. Geophy. Res. B 94, 58875894.
Simitev R. & Busse F. H. 2003 Patterns of convection in rotating spherical shells. New J. Phys. 5, 97.197.20.
Soward A. M. 1977 On the finite amplitude thermal instability in a rapidly rotating fluid sphere. Geophys. Astrophys. Fluid Dyn. 9, 1974.
Wijs G. A. d., Kresse G., Vočadlo L., Dobson D., Alfè, D., Gillan M. J. & Price G. D. 1998 The viscosity of liquid iron at the physical conditions of the Earth's core. Nature 392, 805807.
Yano J. I. 1992 Asymptotic theory of thermal convection in a rapidly rotating system. J. Fluid Mech. 243, 103131.
Zhang K. 1992 Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech. 236, 535556.
Zhang K. 1993 On equatorially trapped boundary inertial waves. J. Fluid Mech. 248, 203217.
Zhang K. 1994 On coupling between the Poincaré equation and the heat equation. J. Fluid Mech. 268, 211229.
Zhang K. 1995 On coupling between the Poincaré equation and the heat equation: non-slip boundary condition. J. Fluid Mech. 284, 239256.
Zhang K. & Busse F. H. 1987 On the onset of convection in rotating spherical shells. Geophys. Astrophys. Fluid Dyn. 39, 119147.
Zhang K. & Jones C. A. 1993 The influence of Ekman boundary layers on rotating convection. Geophys. Astrophys. Fluid Dyn. 71, 145162.
Zhang K. & Liao X. 2004 A new asymptotic method for the analysis of convection in a rapidly rotating sphere. J. Fluid Mech. 518, 319346.
Zhang K., Liao X. & Busse F. 2007 Asymptotic solutions of convection in rapidly rotating non-slip spheres. J. Fluid Mech. 578, 371380.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 82 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.