Skip to main content Accessibility help

On the orientational dependence of drag experienced by spheroids

  • Sathish K. P. Sanjeevi (a1) and Johan T. Padding (a1) (a2)


The flow around different prolate (needle-like) and oblate (disc-like) spheroids is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient $C_{D,\unicode[STIX]{x1D719}}$ at different incident angles $\unicode[STIX]{x1D719}$ for a wide range of Reynolds numbers ( $\mathit{Re}$ ). We show that the sine-squared drag law $C_{D,\unicode[STIX]{x1D719}}=C_{D,\unicode[STIX]{x1D719}=0^{\circ }}+(C_{D,\unicode[STIX]{x1D719}=90^{\circ }}-C_{D,\unicode[STIX]{x1D719}=0^{\circ }})\sin ^{2}\unicode[STIX]{x1D719}$ holds up to large Reynolds numbers, $\mathit{Re}=2000$ . Further, we explore the physical origin behind the sine-squared law, and reveal that, surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag at higher $\mathit{Re}$ for different incident angles. The present results demonstrate that it is possible to perform just two simulations at $\unicode[STIX]{x1D719}=0^{\circ }$ and $\unicode[STIX]{x1D719}=90^{\circ }$ for a given $\mathit{Re}$ and obtain particle-shape-specific $C_{D}$ at arbitrary incident angles. However, the model has limited applicability to flatter oblate spheroids, which do not exhibit the sine-squared interpolation, even for $\mathit{Re}=100$ , due to stronger wake-induced drag. Regarding lift coefficients, we find that the equivalent theoretical equation can provide a reasonable approximation, even at high $\mathit{Re}$ , for prolate spheroids.


Corresponding author

Email address for correspondence:


Hide All
Aidun, C. K., Lu, Y. & Ding, E.-J. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.
Bouzidi, M., Firdaouss, M. & Lallemand, P. 2001 Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 34523459.
El Khoury, G. K., Andersson, H. I. & Pettersen, B. 2010 Crossflow past a prolate spheroid at Reynolds number of 10 000. J. Fluid Mech. 659, 365374.
El Khoury, G. K., Andersson, H. I. & Pettersen, B. 2012 Wakes behind a prolate spheroid in crossflow. J. Fluid Mech. 701, 98136.
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. vol. 1. Springer.
Hecht, M. & Harting, J. 2010 Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations. J. Stat. Mech. Theory Exp. 2010, P01018.
Hölzer, A. & Sommerfeld, M. 2009 Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38, 572589.
Huang, H., Yang, X., Krafczyk, M. & Lu, X.-Y. 2012 Rotation of spheroidal particles in Couette flows. J. Fluid Mech. 692, 369394.
d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L.-S. 2002 Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360, 437451.
Jiang, F., Gallardo, J. P., Andersson, H. I. & Zhang, Z. 2015 The transitional wake behind an inclined prolate spheroid. Phys. Fluids 27, 093602.
Kruggel-Emden, H., Kravets, B., Suryanarayana, M. K. & Jasevicius, R. 2016 Direct numerical simulation of coupled fluid flow and heat transfer for single particles and particle packings by a LBM-approach. Powder Technol. 294, 236251.
Lallemand, P. & Luo, L.-S. 2003 Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184, 406421.
Ouchene, R., Khalij, M., Arcen, B. & Tanière, A. 2016 A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol. 303, 3343.
Pan, C., Luo, L.-S. & Miller, C. T. 2006 An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35, 898909.
Ploumhans, P., Winckelmans, G. S., Salmon, J. K., Leonard, A. & Warren, M. S. 2002 Vortex methods for direct numerical simulation of three-dimensional bluff body flows: application to the sphere at Re = 300, 500, and 1000. J. Comput. Phys. 178, 427463.
Vakarelski, I. U., Berry, J. D., Chan, D. Y. C. & Thoroddsen, S. T. 2016 Leidenfrost vapor layers reduce drag without the crisis in high viscosity liquids. Phys. Rev. Lett. 117, 114503.
Zastawny, M., Mallouppas, G., Zhao, F. & Van Wachem, B. 2012 Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Intl J. Multiphase Flow 39, 227239.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

On the orientational dependence of drag experienced by spheroids

  • Sathish K. P. Sanjeevi (a1) and Johan T. Padding (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.