Skip to main content Accessibility help
×
Home

On the oscillations of harbours of arbitrary shape

  • Li-San Hwang (a1) and Ernest O. Tuck (a2)

Abstract

A theory is developed for calculating oscillations of harbours of constant depth and arbitrary shape. This theory is based on the solution of a singular integral equation. Numerical results have been calculated for rectangular harbours so as to check the accuracy of the method. Examples for wave amplification factor and velocity field for both rectangular and actual complex-shaped harbours are given.

Copyright

References

Hide All
Biesel, F. & Le Méhauté, B. 1955 Etude theorique de la reflexion de la houle sur certains obstacles. La Houille Blanche, pp. 130140.
Biesel, F. & Le Méhauté, B. 1956 Mouvements de resonance a deux dimensions dans une enceinte sous l'action d'ondes incidentes. La Houille Blanche, pp. 348374.
Ippen, A. T. & Goda, Y. 1963 Wave induced oscillations in harbours: The solution for a rectangular harbour connected to the open sea. Hydro Lab., Mass. Inst. of Tech.
Kravtchenko, J. & McNown, J. S. 1955 Seiche in rectangular ports. Quart. Appl. Math. 13, 1926.
Leendertse, Jan J. 1967 Aspects of a computational model for long period water-wave propagation. Rand Co. Report no. RM-5294-PR.
Le Méhauté, B. 1960 Periodical gravity wave on a discontinuity. J. Hydraulics Div. ASCE, pp. 1141.
Le Méhauté, B. 1961 Theory of wave agitation in a harbour. J. Hydraulics Div. ASCE, no. 2765.
Loomis, H. 1966 Some numerical hydrodynamics for Hilo harbour, Hawaii. Institute of Geophysics, University of Hawaii.
Mcnown, J. S. 1952 Waves and Seiche in idealized ports. Gravity Waves Symposium, National Bureau of Standards, Circular 521.
Miles, J. & Munk, W. 1961 Harbour paradox. Journal of Waterways and Harbours Division, ASCE, no. 2888.
Stoker, J. J. 1963 Water Waves. New York: Interscience.
Wilson, B. W., Hendrickson, J. A. & Kilmer, R. E. 1965 Feasibility study for surge-action model of Monterey harbour, California. U.S. Army Engineers, WES, Corps of Engineers.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed