Skip to main content
    • Aa
    • Aa

On the relationships between local vortex identification schemes


We analyse the currently popular vortex identification criteria that are based on point-wise analysis of the velocity gradient tensor. A new measure of spiralling compactness of material orbits in vortices is introduced and using this measure a new local vortex identification criterion and requirements for a vortex core are proposed. The inter-relationships between the different criteria are explored analytically and in a few flow examples, using both zero and non-zero thresholds for the identification parameter. These inter-relationships provide a new interpretation of the various criteria in terms of the local flow kinematics. A canonical turbulent flow example is studied, and it is observed that all the criteria, given the proposed usage of threshold, result in remarkably similar looking vortical structures. A unified interpretation based on local flow kinematics is offered for when similarity or differences can be expected in the vortical structures educed using the different criteria.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 374 *
Loading metrics...

Abstract views

Total abstract views: 671 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.