Skip to main content Accessibility help
×
×
Home

On the role of adaptivity for robust laminar flow control

  • Nicolò Fabbiane (a1), Bernhard Simon (a2), Felix Fischer (a2), Sven Grundmann (a2), Shervin Bagheri (a1) and Dan S. Henningson (a1)...

Abstract

In boundary-layer flows, one may reduce skin-friction drag by delaying the onset of laminar-to-turbulent transition via the attenuation of small-amplitude Tollmien–Schlichting (TS) waves. In this work, we use numerical simulations and experiments to compare the robustness of adaptive and model-based techniques for reducing the growth of two-dimensional TS disturbances. In numerical simulations, the optimal linear quadratic Gaussian (LQG) regulator shows the best performance under the conditions it was designed for. However, it is found that the performance deteriorates linearly with the drift of the Reynolds number from its nominal value. As a result, an order-of-magnitude loss of performance is observed when applying the computation-based LQG controller in wind-tunnel experiments. In contrast, it is shown that the adaptive filtered-X least-mean-squares (FXLMS) algorithm is able to maintain an essentially constant performance for significant deviations of the nominal values of the disturbance amplitude and Reynolds number.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On the role of adaptivity for robust laminar flow control
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On the role of adaptivity for robust laminar flow control
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On the role of adaptivity for robust laminar flow control
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: nicolo@mech.kth.se

References

Hide All
Aström, K. J. & Wittenmark, B. 1995 Adaptive Control, 2nd edn. Addison-Wesley.
Bagheri, S., Brandt, L. & Henningson, D. S. 2009 Input–output analysis, model reduction and control of the flat-plate boundary layer. J. Fluid Mech. 620 (1), 263298.
Bagheri, S. & Henningson, D. S. 2011 Transition delay using control theory. Phil. Trans. R. Soc. Lond. A 369, 13651381.
Barbagallo, A., Sipp, D. & Schmid, P. J. 2009 Closed-loop control of an open cavity flow using reduced order models. J. Fluid Mech. 641, 150.
Barckmann, K.2014, Active vortex generation using dielectric barrier discharge plasma actuators in laminar boundary layers. PhD thesis, Technischen Universitadt Darmstadt.
Belson, B. A., Semeraro, O., Rowley, C. W. & Henningson, D. S. 2013 Feedback control of instabilities in the two-dimensional Blasius boundary layer: the role of sensors and actuators. Phys. Fluids 25, 054106.
Bewley, T. R. & Liu, S. 1998 Optimal and robust control and estimation of linear paths to transition. J. Fluid Mech. 365, 305349.
Borodulin, V. I., Kachanov, Y. S. & Koptsev, D. B. 2002 Experimental study of resonant interactions of instability waves in self-similar boundary layer with an adverse pressure gradient: ii. Detuned resonances*. J. Turbul. 3, 62.
Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S.2007, A pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07. KTH Mechanics, Stockholm, Sweden.
Doyle, J. C. 1978 Guaranteed margins for LQG regulators. IEEE Trans. Autom. Control 23 (4), 756757.
Engert, M., Pätzold, A., Becker, R. & Nitsche, W. 2008 Active cancellation of Tollmien–Schlichting instabilities in compressible flows using closed-loop control. In IUTAM Symposium on Flow Control and MEMS, vol. 7, pp. 319331. Springer.
Fabbiane, N., Semeraro, O., Bagheri, S. & Henningson, D. S. 2014 Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev. 66 (6), 060801.
Glad, T. & Ljung, L. 2000 Control Theory. Taylor & Francis.
Goldin, N., King, R., Pätzold, A., Nitsche, W., Haller, D. & Woias, P. 2013 Laminar flow control with distributed surface actuation: damping Tollmien–Schlichting waves with active surface displacement. Exp. Fluids 54 (3), 111.
Haykin, S. 1986 Adaptive Filter Theory. Prentice-Hall.
Juillet, F., McKeon, B. J. & Schmid, P. J. 2014 Experimental control of natural perturbations in channel flow. J. Fluid Mech. 752, 296309.
Kriegseis, J., Schwarz, C., Tropea, C. & Grundmann, S. 2013 Velocity-information-based force-term estimation of dielectric-barrier discharge plasma actuators. J. Phys. D 46 (5), 055202.
Kurz, A., Goldin, N., King, R., Tropea, C. D. & Grundmann, S. 2013 Hybrid transition control approach for plasma actuators. Exp. Fluids 54 (11), 14.
Lundell, F. 2007 Reactive control of transition induced by free-stream turbulence: an experimental demonstration. J. Fluid Mech. 585, 4171.
Nordström, J., Nordin, N. & Henningson, D. 1999 The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J. Sci. Comp. 20 (4), 13651393.
Saric, W. S., Reed, H. L. & Kerschen, E. J. 2002 Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34 (1), 291319.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer.
Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D. S. 2013a Transition delay in a boundary layer flow using active control. J. Fluid Mech. 731 (9), 288311.
Semeraro, O., Pralits, J. O., Rowley, C. W. & Henningson, D. S. 2013 b Riccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers. J. Fluid Mech. 731, 394417.
Sturzebecher, D. & Nitsche, W. 2003 Active cancellation of Tollmien–Schlichting instabilities on a wing using multi-channel sensor actuator systems. Intl J. Heat Fluid Flow 24, 572583.
Würz, W., Sartorius, D., Kloker, M., Borodulin, V. I., Kachanov, Y. S. & Smorodsky, B. V. 2012 Nonlinear instabilities of a non-self-similar boundary layer on an airfoil: experiments, DNS, and theory. Eur. J. Mech. B 31, 102128.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed