Skip to main content Accessibility help

On the rotation of porous ellipsoids in simple shear flows

  • Hassan Masoud (a1) (a2), Howard A. Stone (a2) and Michael J. Shelley (a1)


We study theoretically the dynamics of porous ellipsoids rotating in simple shear flows. We use the Brinkman–Debye–Bueche (BDB) model to simulate flow within and through particles and solve the coupled Stokes–BDB equations to calculate the overall flow field and the rotation rate of porous ellipsoids. Our results show that the permeability has little effect on the rotational behaviour of particles, and that Jeffery’s prediction of the angular velocity of impermeable ellipsoids in simple shear flows (Proc. R. Soc. Lond. A, vol. 102, 1922, pp. 161–179) remains an excellent approximation, if not an exact one, for porous ellipsoids. Employing an appropriate scaling, we also present approximate expressions for the torque exerted on ellipses and spheroids rotating in a quiescent fluid. Our findings can serve as the basis for developing a suspension theory for non-spherical porous particles, or for understanding the orientational diffusion of permeable ellipses and spheroids.


Corresponding author

Email address for correspondence:


Hide All
Abade, G. C., Cichocki, B., Ekiel-Jezewska, M. L., Nagele, G. & Wajnryb, E. 2010 High-frequency viscosity of concentrated porous particles suspensions. J. Chem. Phys. 133, 084906.
Adler, P. M. & Mills, P. M. 1979 Motion and rupture of a porous sphere in a linear flow field. J. Rheol. 23, 2537.
Blaser, S. 2000 Flocs in shear and strain flows. J. Colloid Interface Sci. 225, 273284.
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284304.
Brinkman, H. C. 1947 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 2734.
Brinkman, H. C. 1948 On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A 1, 8186.
Chwang, A. T. & Wu, T. Y. T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67, 787815.
Cichocki, B. & Felderhof, B. U. 2009 Hydrodynamic friction coefficients of coated spherical particles. J. Chem. Phys. 130, 164712.
Darcy, H. 1856 Les Fontaines Publiques de la Ville de Dijon: Exposition et Application. Victor Dalmont.
Davis, R. H. & Stone, H. A. 1993 Flow through beds of porous particles. Chem. Engng Sci. 48, 39934005.
Debye, P. & Bueche, A. M. 1948 Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys. 16, 573579.
Deen, W. M. 1987 Hindered transport of large molecules in liquid-filled pores. AIChE J. 33, 14091425.
Deng, M. & Dodson, C. T. J. 1994 Random star patterns and paper formation. Tappi J. 77, 195199.
Durlofsky, L. & Brady, J. F. 1987 Analysis of the Brinkman equation as a model for flow in porous-media. Phys. Fluids 30, 33293341.
Felderhof, B. U. 1975 Frictional properties of dilute polymer solutions: III. Translational friction coefficient. Physica A 80, 6375.
Gujer, W. & Boller, M. 1978 Basis for the design of alternative chemical-biological waste-water treatment processes. Prog. Water Technol. 10, 741758.
Higdon, J. J. L. & Kojima, M. 1981 On the calculation of Stokes flow past porous particles. Intl J. Multiphase Flow 7, 719727.
Hsu, J. P. & Hsieh, Y. H. 2003 Drag force on a porous, non-homogeneous spheroidal floc in a uniform flow field. J. Colloid Interface Sci. 259, 301308.
Jeffery, G. B. 1922 The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.
Keller, S. R. & Wu, T. Y. 1977 Porous prolate-spheroidal model for ciliated microorganisms. J. Fluid Mech. 80, 259278.
Kirsh, V. A. 2006 Stokes flow past periodic rows of porous cylinders. Theor. Found. Chem. Engng 40, 465471.
Ma, M. Y., Zhu, Y. J., Li, L. & Cao, S. W. 2008 Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery. J. Mater. Chem. 18, 27222727.
Masoud, H. & Alexeev, A. 2010 Permeability and diffusion through mechanically deformed random polymer networks. Macromolecules 43, 1011710122.
Masoud, H. & Alexeev, A. 2012 Controlled release of nanoparticles and macromolecules from responsive microgel capsules. ACS Nano 6, 212219.
Masoud, H., Bingham, B. I. & Alexeev, A. 2012 Designing maneuverable micro-swimmers actuated by responsive gel. Soft Matt. 8, 89448951.
Mo, G. B. & Sangani, A. S. 1994 A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles. Phys. Fluids 6, 16371652.
Nguyen, H., Karp-Boss, L., Jumars, P. A. & Fauci, L. 2011 Hydrodynamic effects of spines: A different spin. Limnol. Oceanogr.-Fluids Environ. 1, 110119.
Ollila, S. T. T., Ala-Nissila, T. & Denniston, C. 2012 Hydrodynamic forces on steady and oscillating porous particles. J. Fluid Mech. 709, 123148.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Regnier, F. E. 1991 Perfusion chromatography. Nature 350, 634635.
Reuland, P., Felderhof, B. U. & Jones, R. B. 1978 Hydrodynamic interaction of two spherically symmetric polymers. Physica A 93, 465475.
Richardson, J. & Power, H. 1996 A boundary element analysis of creeping flow past two porous bodies of arbitrary shape. Engng Anal. Bound. Elem. 17, 193204.
Sonntag, R. C. & Russel, W. B. 1987 Structure and breakup of flocs subjected to fluid stresses. II. Theory. J. Colloid Interface Sci. 115, 378389.
Stuart, M. A. C., Huck, W. T. S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G. B., Szleifer, I., Tsukruk, V. V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. & Minko, S. 2010 Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101113.
Vainshtein, P. & Shapiro, M. 2006 Porous agglomerates in the general linear flow field. J. Colloid Interface Sci. 298, 183191.
Vainshtein, P., Shapiro, M. & Gutfinger, C. 2004 Mobility of permeable aggregates: effects of shape and porosity. J. Aerosol Sci. 35, 383404.
Vanni, M. & Gastaldi, A. 2011 Hydrodynamic forces and critical stresses in low-density aggregates under shear flow. Langmuir 27, 1282212833.
Yang, S. M. & Hong, W. H. 1988 Motions of a porous particle in Stokes flow. Part 1. Unbounded single-fluid domain problem. Korean J. Chem. Engng 5, 2334.
Yano, H., Kieda, A. & Mizuno, I. 1991 The fundamental solution of Brinkman equation in 2 dimensions. Fluid Dyn. Res. 7, 109118.
Zlatanovski, T. 1999 Axisymmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model. Q. J. Mech. Appl. Maths 52, 111126.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

On the rotation of porous ellipsoids in simple shear flows

  • Hassan Masoud (a1) (a2), Howard A. Stone (a2) and Michael J. Shelley (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.