Skip to main content
    • Aa
    • Aa

On the spreading of impacting drops

  • Sander Wildeman (a1), Claas Willem Visser (a1), Chao Sun (a1) (a2) and Detlef Lohse (a1) (a3)

The energy budget and dissipation mechanisms during droplet impact on solid surfaces are studied numerically and theoretically. We find that for high impact velocities and negligible surface friction at the solid surface (i.e. free slip), approximately one-half of the initial kinetic energy is transformed into surface energy, independent of the impact parameters and the detailed energy loss mechanism(s). We argue that this seemingly universal rule is related to the deformation mode of the droplet and is reminiscent of pipe flow undergoing a sudden expansion, for which the head loss can be calculated by multiplying the kinetic energy of the incoming flow by a geometrical factor. For impacts on a no-slip surface also dissipation in the shear boundary layer at the solid surface is important. In this case the geometric head loss acts as a lower bound on the total dissipation (i.e. the spreading on a no-slip surface approaches that on a free-slip surface when the droplet viscosity is sent to zero). This new view on the impact problem allows for simple analytical estimates of the maximum spreading diameter of impacting drops as a function of the impact parameters and the properties of the solid surface. It bridges the gap between previous momentum balance approaches and energy balance approaches, which hitherto did not give consistent predictions in the low viscosity limit. Good agreement is found between our models and experiments, both for impacts on ‘slippery’ or lubricated surfaces (e.g. Leidenfrost droplet impacts and head-on droplet–droplet collisions) and for impacts on no-slip surfaces.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. Antonini , A. Amirfazli  & M. Marengo 2012 Drop impact and wettability: from hydrophilic to superhydrophobic surfaces. Phys. Fluids 24, 102104.

P. Attané , F. Girard  & V. Morin 2007 An energy balance approach of the dynamics of drop impact on a solid surface. Phys. Fluids 19, 012101.

S. D. Aziz  & S. Chandra 2000 Impact, recoil and splashing of molten metal droplets. Intl J. Heat Mass Transfer 43 (16), 28412857.

D. Bartolo , C. Josserand  & D. Bonn 2006 Singular jets and bubbles in drop impact. Phys. Rev. Lett. 96, 124501.

R. Blossey 2003 Self-cleaning surfaces virtual realities. Nat. Mater. 2, 301306.

F. Boyer , E. Sandoval-Nava , J. H. Snoeijer , J. F. Dijksman  & D. Lohse 2016 Drop impact of shear thickening liquids. Phys. Rev. Fluids 1, 013901.

S. Chandra  & C. T. Avedisian 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432 (1884), 1341.

F. E. C. Culick 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (6), 11281129.

J. De Ruiter , R. Lagraauw , D. Van den Ende  & F. Mugele 2014 Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11 (1), 4853.

J. Eggers , M. A. Fontelos , C. Josserand  & S. Zaleski 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22 (6), 062101.

C. Josserand  & S. T. Thoroddsen 2016 Drop impact on solid surface. Annu. Rev. Fluid Mech. 48 (1), 365391.

J. Kim 2007 Spray cooling heat transfer: the state of the art. Intl J. Heat Fluid Flow 28, 753767.

N. Laan , K. G. De Bruin , D. Bartolo , C. Josserand  & D. Bonn 2014 Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2 (4), 044018.

G. Lagubeau , M. A. Fontelos , C. Josserand , A. Maurel , V. Pagneux  & P. Petitjeans 2012 Spreading dynamics of drop impacts. J. Fluid Mech. 713, 5060.

J. B. Lee , D. Derome , R. Guyer  & Carmeliet J. 2016 Modelling the maximum spreading of liquid droplets impacting wetting and non-wetting surfaces. Langmuir 32 (5), 12991308.

M. Marengo , C. Antonini , I. V. Roisman  & C. Tropea 2011 Drop collisions with simple and complex surfaces. Curr. Opin. Colloid Interface Sci. 16 (4), 292302.

L. Mishchenko , B. Hatton , V. Bahadur , J. A. Taylor , T. Krupenkin  & J. Aizenberg 2010 Design of ice-free nanostructured impacting water droplets. ACS Nano 4 (12), 76997707.

K. Okumura , F. Chevy , D. Richard , D. Quéré  & C. Clanet 2003 Water spring: a model for bouncing drops. Europhys. Lett. 62 (2), 237243.

M. Pasandideh-Fard , Y. M. Qiao , S. Chandra  & J. Mostaghimi 1996 Capillary effects during droplet impact on a solid surface. Phys. Fluids 8 (3), 650659.

S. Popinet 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (July), 572600.

S. Popinet 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.

D. Quéré 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197215.

M. Rein 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 6193.

D. Richard  & D. Quéré 2000 Bouncing water drops. Europhys. Lett. 50 (6), 769775.

R. Rioboo , M. Marengo  & C. Tropea 2002 Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33 (1), 112124.

I. V. Roisman 2009 Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21 (5), 052104.

I. V. Roisman , E. Berberovi  & C. Tropea 2009 Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21 (5), 052103.

C. D. Stow  & M. G. Hadfield 1981 An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. A 373 (1755), 419441.

G. Sünderhauf , H. Raszillier  & F. Durst 2002 The retraction of the edge of a planar liquid sheet. Phys. Fluids 14 (1), 198208.

G. Taylor 1959 The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253 (1274), 313321.

M.-J. Thoraval , K. Takehara , T. G. Etoh , S. Popinet , P. Ray , C. Josserand , S. Zaleski  & S. T. Thoroddsen 2012 von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108 (26), 264506.

S. T. Thoroddsen , T. G. Etoh  & K. Takehara 2008 High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech. 40, 257285.

T. Tran , H. J. J. Staat , A. Prosperetti , C. Sun  & D. Lohse 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108 (3), 036101.

C. Ukiwe  & D. Y. Kwok 2005 On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21 (31), 666673.

D. B. Van Dam  & C. Le Clerc 2004 Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16 (9), 34033414.

C. Visser , P. E. Frommhold , S. Wildeman , R. Mettin , D. Lohse  & C. Sun 2015 Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matt. 11, 17081722.

Š. Šikalo , H.-D. Wilhelm , I. V. Roisman , S. Jakirlić  & C. Tropea 2005 Dynamic contact angle of spreading droplets: experiments and simulations. Phys. Fluids 17 (2005), 062103.

K. Willis  & M. Orme 2003 Binary droplet collisions in a vacuum environment: an experimental investigation of the role of viscosity. Exp. Fluids 34 (1), 2841.

A. L. Yarin 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159192.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 9
Total number of PDF views: 268 *
Loading metrics...

Abstract views

Total abstract views: 489 *
Loading metrics...

* Views captured on Cambridge Core between 23rd September 2016 - 24th June 2017. This data will be updated every 24 hours.