Skip to main content
×
Home
    • Aa
    • Aa

On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis

  • M. Luhar (a1), A. S. Sharma (a2) and B. J. McKeon (a1)
Abstract
Abstract

We generate predictions for the fluctuating pressure field in turbulent pipe flow by reformulating the resolvent analysis of McKeon and Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) in terms of the so-called primitive variables. Under this analysis, the nonlinear convective terms in the Fourier-transformed Navier–Stokes equations (NSE) are treated as a forcing that is mapped to a velocity and pressure response by the resolvent of the linearized Navier–Stokes operator. At each wavenumber–frequency combination, the turbulent velocity and pressure field are represented by the most-amplified (rank-1) response modes, identified via a singular value decomposition of the resolvent. We show that these rank-1 response modes reconcile many of the key relationships among the velocity field, coherent structure (i.e. hairpin vortices), and the high-amplitude wall-pressure events observed in previous experiments and direct numerical simulations (DNS). A Green’s function representation shows that the pressure fields obtained under this analysis correspond primarily to the fast pressure contribution arising from the linear interaction between the mean shear and the turbulent wall-normal velocity. Recovering the slow pressure requires an explicit treatment of the nonlinear interactions between the Fourier response modes. By considering the velocity and pressure fields associated with the triadically consistent mode combination studied by Sharma and McKeon (J. Fluid Mech., vol. 728, 2013, pp. 196–238), we identify the possibility of an apparent amplitude modulation effect in the pressure field, similar to that observed for the streamwise velocity field. However, unlike the streamwise velocity, for which the large scales of the flow are in phase with the envelope of the small-scale activity close to the wall, we expect there to be a $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\pi /2$ phase difference between the large-scale wall-pressure and the envelope of the small-scale activity. Finally, we generate spectral predictions based on a rank-1 model assuming broadband forcing across all wavenumber–frequency combinations. Despite the significant simplifying assumptions, this approach reproduces trends observed in previous DNS for the wavenumber spectra of velocity and pressure, and for the scale-dependence of wall-pressure propagation speed.

Copyright
Corresponding author
Email address for correspondence: mluhar@cantab.net
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P. R. Bandhyopadhyay  & A. K. M. F. Hussain 1984 The coupling between scales in shear flows. Phys. Fluids 27 (9), 22212228.

P. Bradshaw  & Y. M. Koh 1981 A note on Poisson’s equation for pressure in a turbulent flow. Phys. Fluids 24, 777.

M. K. Bull 1967 Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28, 719754.

P. Chakraborty , S. Balachandar  & R. J. Adrian 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.

H. Choi  & P. Moin 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids 2 (8), 14501460.

H. Choi , P. Moin  & J. Kim 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.

D. Chung  & B. J. McKeon 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.

A. Dinkelacker , M. Hessel , G. E. A. Meier  & G. Schewe 1977 Investigation of pressure fluctuations beneath a turbulent boundary layer by means of an optical method. Phys. Fluids 20 (10), S216S224.

C. Foias , O. Manley , R. Rosa  & R. Temam 2001 Navier–Stokes Equations and Turbulence. Cambridge University Press.

S. Ghaemi  & F. Scarano 2013 Turbulent structure of high-amplitude pressure peaks within the turbulent boundary layer. J. Fluid Mech. 735, 381426.

Z. H. Hu , C. L. Morfey  & N. D. Sandham 2002 Aeroacoustics of wall-bounded turbulent flows. AIAA J. 40 (3), 465473.

I. Jacobi  & B. J. McKeon 2013 Phase relationships between large and small scales in the turbulent boundary layer. Exp. Fluids 54, 1481.

J. Jimenez  & S. Hoyas 2008 Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215236.

A. V. Johansson , J. Y. Her  & J. H. Haritonidis 1987 On the generation of high-amplitude wall-pressure peaks in turbulent boundary-layers and spots. J. Fluid Mech. 175, 119142.

J. Kim 1989 On the structure of pressure-fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.

J. Klewicki , P. J. A. Priyadarshana  & M. M. Metzger 2008 Statistical structure of the fluctuating wall pressure and its in-plane gradients at high Reynolds number. J. Fluid Mech. 609, 195220.

P. Koumoutsakos 1999 Vorticity flux control for a turbulent channel flow. Phys. Fluids 11, 248.

M. Luhar , A. S. Sharma  & B. J. McKeon 2014 Opposition control within the resolvent analysis framework. J. Fluid Mech. 749, 597626.

I. Marusic  & W. D. C. Heuer 2007 Reynolds number invariance of the structure inclination angle in wall turbulence. Phys. Rev. Lett. 99, 114504.

I. Marusic , R. Mathis  & N. Hutchins 2010 Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.

R. Mathis , N. Hutchins  & I. Marusic 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.

R. Mathis , N. Hutchins  & I. Marusic 2011 A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566.

B. J. McKeon , I. Jacobi  & A. S. Sharma 2013 Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids 25, 031301.

B. J. McKeon , J. Li , W. Jiang , J. F. Morrison  & A. J. Smits 2004 Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135147.

B. J. McKeon  & A. S. Sharma 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.

A. Meseguer  & L. N. Trefethen 2003 Linearized pipe flow to Reynolds number $10^7$. J. Comput. Phys. 186 (1), 178197.

R. Moarref , A. S. Sharma , J. A. Tropp  & B. J. McKeon 2013 Model-based scaling and prediction of the streamwise energy intensity in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.

C. O’Farrell  & P. Martin 2009 Chasing eddies and their wall signature in DNS data of turbulent boundary layers. J. Turbul. 10, N15.

R. L. Panton  & J. H. Linebarger 1974 Wall pressure spectra calculations for equilibrium boundary layers. J. Fluid Mech. 65 (2), 261287.

A. E. Perry  & M. S. Chong 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.

A. E. Perry , S. Henbest  & M. S. Chong 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.

A. E. Perry  & I. Marusic 1995 A wall-wake model for the turbulence structure of boundary-layers. 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.

G. Schewe 1983 On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow. J. Fluid Mech. 134, 311328.

A. S. Sharma  & B. J. McKeon 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.

A. S. Sharma , J. F. Morrison , B. J. McKeon , D. J. N. Limebeer , W. H. Koberg  & S. J. Sherwin 2011 Relaminarisation of ${R}e_{\tau }=100$ channel flow with globally stabilizing linear feedback control. Phys. Fluids 23 (12), 125105.

S. R. Snarski  & R. M. Lueptow 1995 Wall pressure and coherent structures in a turbulent boundary layer on a cylinder in axial flow. J. Fluid Mech. 286, 137171.

A. S. W. Thomas  & M. K. Bull 1983 On the role of wall-pressure fluctuations in deterministic motions in the turbulent boundary layer. J. Fluid Mech. 128, 283322.

L. N. Trefethen 2000 Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics.

Y. Tsuji , J. H. M. Fransson , P. H. Alfredsson  & A. V. Johansson 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 140.

Y. Tsuji , S. Imayama , P. Schlatter , P. H. Alfredsson , A. V. Johansson , I. Marusic , N. Hutchins  & J. Monty 2012 Pressure fluctuation in high-Reynolds-number turbulent boundary layer: results from experiments and DNS. J. Turbul. 13 (50), 119.

X. Wu  & P. Moin 2008 A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81112.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 88 *
Loading metrics...

Abstract views

Total abstract views: 262 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st September 2017. This data will be updated every 24 hours.