Skip to main content
×
×
Home

On the transition between turbulence regimes in particle-laden channel flows

  • Jesse Capecelatro (a1), Olivier Desjardins (a2) and Rodney O. Fox (a3)
Abstract

Turbulent wall-bounded flows exhibit a wide range of regimes with significant interaction between scales. The fluid dynamics associated with single-phase channel flows is predominantly characterized by the Reynolds number. Meanwhile, vastly different behaviour exists in particle-laden channel flows, even at a fixed Reynolds number. Vertical turbulent channel flows seeded with a low concentration of inertial particles are known to exhibit segregation in the particle distribution without significant modification to the underlying turbulent kinetic energy (TKE). At moderate (but still low) concentrations, enhancement or attenuation of fluid-phase TKE results from increased dissipation and wakes past individual particles. Recent studies have shown that denser suspensions significantly alter the two-phase dynamics, where the majority of TKE is generated by interphase coupling (i.e.  drag) between the carrier gas and clusters of particles that fall near the channel wall. In the present study, a series of simulations of vertical particle-laden channel flows with increasing mass loading is conducted to analyse the transition from the dilute limit where classical mean-shear production is primarily responsible for generating fluid-phase TKE to high-mass-loading suspensions dominated by drag production. Eulerian–Lagrangian simulations are performed for a wide range of particle loadings at two values of the Stokes number, and the corresponding two-phase energy balances are reported to identify the mechanisms responsible for the observed transition.

Copyright
Corresponding author
Email address for correspondence: jcaps@umich.edu
References
Hide All
Agrawal, K., Loezos, P. N., Syamlal, M. & Sundaresan, S. 2001 The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech. 445, 151185.
Anderson, T. B. & Jackson, R. 1967 Fluid mechanical description of fluidized beds. Equations of motion. Ind. Engng Chem. Fundam. 6 (4), 527539.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Capecelatro, J. & Desjardins, O. 2013 An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.
Capecelatro, J. & Desjardins, O. 2015 Mass loading effects on turbulence modulation by particle clustering in dilute and moderately dilute channel flows. J. Fluids Engng 137, 18.
Capecelatro, J., Desjardins, O. & Fox, R. O. 2014a Numerical study of collisional particle dynamics in cluster-induced turbulence. J. Fluid Mech. 747, R2.
Capecelatro, J., Desjardins, O. & Fox, R. O. 2015 On fluid–particle dynamics in fully developed cluster-induced turbulence. J. Fluid Mech. 780, 578635.
Capecelatro, J., Desjardins, O. & Fox, R. O. 2016a Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase statistics. Phys. Fluids 28, 033306.
Capecelatro, J., Desjardins, O. & Fox, R. O. 2016b Strongly coupled fluid-particle flows in vertical channels. II. Turbulence modeling. Phys. Fluids 28, 033307.
Capecelatro, J., Pepiot, P. & Desjardins, O. 2014b Numerical characterization and modeling of particle clustering in wall-bounded vertical risers. Chem. Engng J. 245, 295310.
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Geotechnique 29 (1), 4765.
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008 High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227 (15), 71257159.
Dritselis, C. D. 2016 Direct numerical simulation of particle-laden turbulent channel flows with two-and four-way coupling effects: budgets of Reynolds stress and streamwise enstrophy. Fluid Dyn. Res. 48 (1), 015507.
Fessler, J. R., Kulick, J. D. & Eaton, J. K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6 (11), 37423749.
Février, P., Simonin, O. & Squires, K. D. 2005 Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533, 146.
Fox, R. O. 2014 On multiphase turbulence models for collisional fluid–particle flows. J. Fluid Mech. 742, 368424.
García-Villalba, M., Kidanemariam, A. G. & Uhlmann, M. 2012 DNS of vertical plane channel flow with finite-size particles: voronoi analysis, acceleration statistics and particle-conditioned averaging. Intl J. Multiphase Flow 46, 5474.
Gibilaro, L. G., Gallucci, K., Di Felice, R. & Pagliai, P. 2007 On the apparent viscosity of a fluidized bed. Chem. Engng Sci. 62 (1-2), 294300.
Glasser, B. J., Sundaresan, S. & Kevrekidis, I. G. 1998 From bubbles to clusters in fluidized beds. Phys. Rev. Lett. 81, 1849.
Gualtieri, P., Battista, F. & Casciola, C. M. 2017 Turbulence modulation in heavy-loaded suspensions of tiny particles. Phys. Rev. Fluids 2 (3), 034304.
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2013 Clustering and turbulence modulation in particle-laden shear flows. J. Fluid Mech. 715, 134162.
Igci, Y., Andrews, A. T., Sundaresan, S., Pannala, S. & O’Brien, T. 2008 Filtered two-fluid models for fluidized gas-particle suspensions. AIChE J. 54 (6), 14311448.
Jenkins, J. T. & Savage, S. B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187202.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.
Lashgari, I., Picano, F., Breugem, W. P. & Brandt, L. 2016 Channel flow of rigid sphere suspensions: particle dynamics in the inertial regime. Intl J. Multiphase Flow 78, 1224.
Lashgari, I., Picano, F., Costa, P., Breugem, W. P. & Brandt, L. 2017 Turbulent channel flow of a dense binary mixture of rigid particles. J. Fluid Mech. 818, 623645.
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.
Ozel, A., Fede, P. & Simonin, O. 2013 Development of filtered Euler–Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses. Intl J. Multiphase Flow 55, 4363.
Passalacqua, A., Galvin, J. E., Vedula, P., Hrenya, C. M. & Fox, R. O. 2011 A quadrature-based kinetic model for dilute non-isothermal granular flows. Commun. Comput. Phys. 10 (1), 216252.
Picano, F., Breugem, W. P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.
Picciotto, M., Marchioli, C. & Soldati, A. 2005 Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17, 098101.
Pitton, E., Marchioli, C., Lavezzo, V., Soldati, A. & Toschi, F. 2012 Anisotropy in pair dispersion of inertial particles in turbulent channel flow. Phys. Fluids 24 (7), 073305.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Richter, D. H. 2015 Turbulence modification by inertial particles and its influence on the spectral energy budget in planar Couette flow. Phys. Fluids 27 (6), 063304.
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.
Santarelli, C., Roussel, J. & Fröhlich, J. 2016 Budget analysis of the turbulent kinetic energy for bubbly flow in a vertical channel. Chem. Engng Sci. 141, 4662.
Tanaka, M. 2017 Effect of gravity on the development of homogeneous shear turbulence laden with finite-size particles. J. Turbul. 18, 136.
Tenneti, S., Garg, R., Hrenya, C. M., Fox, R. O. & Subramaniam, S. 2010 Direct numerical simulation of gas–solid suspensions at moderate Reynolds number: quantifying the coupling between hydrodynamic forces and particle velocity fluctuations. Powder Technol. 203 (1), 5769.
Tenneti, S., Garg, R. & Subramaniam, S. 2011 Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Intl J. Multiphase Flow 37 (9), 10721092.
Vreman, A. W. 2007 Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 584, 235279.
Vreman, B., Geurts, B. J., Deen, N. G., Kuipers, J. A. M. & Kuerten, J. G. M. 2009 Two-and four-way coupled Euler–Lagrangian large-eddy simulation of turbulent particle-laden channel flow.. Flow Turbul. Combust. 82 (1), 4771.
Wang, Q. & Squires, K. D. 1996 Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids 8, 12071223.
Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T. & Tsuji, Y. 2001 Large-eddy simulation of turbulent gas–particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303334.
Zhao, L., Andersson, H. I. & Gillissen, J. J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed