Ahadi, A. H. & Saghir, M. Z.
2012
Quasi steady state effect of micro vibration from two space vehicles on mixture during thermodiffusion experiment. Fluid Dyn. Mater. Process.
8
(4), 397–422.
Alexander, J. I. D.
1990
Low gravity experiment sensitivity to residual acceleration: a review. Microgravity Sci. Tech.
l
(3), 52–68.
Atkinson, K. A.
1989
An Introduction to Numerical Analysis, 2nd ed. John Wiley & Sons.
Babiano, A., Cartwright, J. H. E., Piro, O. & Provenzale, A.
2000
Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems. Phys. Rev. Lett.
84, 5764–5767.
Baird, M. H. I., Senior, M. G. & Thompson, R. J.
1967
Terminal velocities of spherical particles in a vertically oscillating liquid. Chem. Engng Sci.
22, 551–558.
Balboa Usabiaga, F., Pagonabarraga, I. & Delgado-Buscalioni, R.
2013
Inertial coupling for point particle fluctuating hydrodynamics. J. Comput. Phys.
235, 701–722.
Balkovsky, E., Falkovich, G. & Fouxon, A.
2001
Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett.
86, 2790–2793.
Benczik, I. J., Toroczkai, Z. & Tél, T.
2002
Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick. Phys. Rev. Lett.
89
(16), 164501.
Biringen, S. & Danabasoglu, G.
1990
Computation of convective flows with gravity modulation in rectangular cavities. J. Thermophys.
4, 357–365.
Bothe, D., Kröger, M. & Warnecke, H.-J.
2011
A VOF-based conservative method for the simulation of reactive mass transfer from rising bubbles. Fluid Dyn. Mater. Process.
7
(3), 303–316.
Busse, F. H., Pfister, G. & Schwabe, D.
1998
Formation of dynamical structures in axisymmetric fluid systems. In Evolution of Spontaneous Structures in Dissipative Continuous Systems, Lecture Notes in Physics, vol. 55, pp. 86–126.
Carotenuto, L., Piccolo, C., Castagnolo, D., Lappa, M. & Garcìa-Ruiz, J. M.
2002
Experimental observations and numerical modelling of diffusion-driven crystallisation processes. Acta Cryst. D
58, 1628–1632.
Coimbra, C. F. M., L’Esperance, D. & Lambert, R. A.
2004
An experimental study on stationary history effects in high-frequency Stokes flows. J. Fluid Mech.
504, 353–363.
Coimbra, F. M. & Rangel, R. H.
2001
Spherical particle motion in harmonic Stokes flows. AIAA J.
39
(9), 1673–1682.
Derksen, J. J. & Eskin, D.
2011
Flow-induced forces in agglomerates. Fluid Dyn. Mater. Process.
7
(4), 341–356.
Di Carlo, D., Edd, J. F., Humphry, K. J., Stone, H. A. & Toner, M.
2009
Particle segregation and dynamics in confined flows. Phys. Rev. Lett.
102, 094503.
Druzhinin, O. A. & Ostrovsky, L. A.
1994
The influence of basset force on particle dynamics in two dimensional flows. Physica D
76, 34–43.
Dyko, M. P. & Vafai, K.
2007
Effects of gravity modulation on convection in a horizontal annulus. Intl J. Heat Mass Transfer
50, 348–360.
Ellison, J., Ahmadi, G., Regel, L. & Wilcox, W.
1995
Particle motion in a liquid under
-jitter excitation. Microgravity Sci. Technol.
8, 140–147.
Esmaeeli, A.
2005
Phase distribution of bubbly flows under terrestrial and microgravity conditions. Fluid Dyn. Mater. Process.
1
(1), 63–80.
Esmaeeli, A. & Tryggvason, G.
1998
Direct numerical simulations of bubbly flows. Part I – low Reynolds number arrays. J. Fluid Mech.
377, 313–345.
Gershuni, G. Z., Lyubimov, D. V., Lyubimova, T. P. & Roux, B.
1994
Convective flows in a liquid bridge under the influence of high frequency vibrations. Microgravity Q.
4
(2), 113–122.
Gershuni, G. Z. & Zhukhovitskii, E. M.
1981
Convective instability of a fluid in a vibration field under conditions of weightlessness. Fluid Dyn.
16
(4), 498–504.
Gershuni, G. Z. & Zhukhovitskii, E. M.
1986
Vibrational thermal convection in zero gravity. Fluid. Mech. Sov. Res.
15
(1), 63–84.
Haller, G. & Sapsis, T.
2012
Lagrangian coherent structures and the smallest finite-time Lyapunov exponent. Chaos
21
(2), 023115.
Hassan, S. & Kawaji, M.
2008
The effects of vibrations on particle motion in a viscous fluid cell. J. Appl. Mech.
75, 031012.
Hassan, S., Lyubimova, T. P., Lyubimov, D. V. & Kawaji, M.
2006a
Motion of a sphere suspended in a vibrating liquid-filled container. J. Appl. Mech.
73, 72–78.
Hassan, S., Lyubimova, T. P., Lyubimov, D. V. & Kawaji, M.
2006b
Effects of vibrations on particle motion near a wall: existence of attraction force. Intl J. Multiphase Flow
32
(9), 1037–1054.
Herringe, R. A.
1977
A study of particle motion induced by two-dimensional liquid oscillations. Intl J. Multiphase Flow
3
(3), 243–253.
Hirata, K., Sasaki, T. & Tanigawa, H.
2001
Vibrational effects on convection in a square cavity at zero gravity. J. Fluid Mech.
445, 327–344.
Hjelmfelt, A. T. & Mockros, L. F.
1966
Motion of discrete particles in a turbulent fluid. Appl. Sci. Res.
16
(1), 149–161.
Homma, S., Yokotsuka, M., Tanaka, T., Moriguchi, K., Koga, J. & Tryggvason, G.
2011
Numerical simulation of an axisymmetric compound droplet by three-fluid front-tracking method. Fluid Dyn. Mater. Process.
7
(3), 231–240.
Houghton, G.
1961
The behaviour of particles in a sinusoidal vector field. Proc. R. Soc. A
272, 33–43.
Ikeda, S.
1989
Fall velocity of single spheres in vertically oscillating fluids. Fluid Dyn. Res.
5, 203–216.
Kamotani, Y., Prasad, A. & Ostrach, S.
1981
Thermal convection in an enclosure due to vibrations aboard spacecraft. AIAA J.
19, 511–516.
Kleckner, D. & Irvine, W. T. M.
2013
Creation and dynamics of knotted vortices. Nature Phys. doi:10.1038/nphys2560.
Kozlov, V. G., Ivanova, A. A. & Evesque, P.
2006
Block stratification of sedimenting granular matter in a vessel due to vertical vibration. Fluid Dyn. Mater. Process.
2
(3), 203–210.
Kuhlmann, H. C. & Muldoon, F. H.
2012
Understanding particle accumulation structures (PAS) in thermocapillary liquid bridges. JASMA
29
(2), 64–98.
Langbein, D.
1991
Motion of ensembles of spherical particles in a fluid due to
-jitter. Adv. Space Res.
11
(7), 189–196.
Lappa, M.
2003a
Three-dimensional numerical simulation of Marangoni flow instabilities in floating zones laterally heated by an equatorial ring. Phys. Fluids
15
(3), 776–789.
Lappa, M.
2003b
Growth and mutual interference of protein seeds under reduced gravity conditions. Phys. Fluids
15
(4), 1046–1057.
Lappa, M.
2004
Combined effect of volume and gravity on the three-dimensional flow instability in non-cylindrical floating zones heated by an equatorial ring. Phys. Fluids
16
(2), 331–343.
Lappa, M.
2005
Assessment of VOF strategies for the analysis of Marangoni migration, collisional coagulation of droplets and thermal wake effects in metal alloys under microgravity conditions. Comput. Mater. Continua
2
(1), 51–64.
Lappa, M.
2006
Oscillatory convective structures and solutal jets originated from discrete distributions of droplets in organic alloys with a miscibility gap. Phys. Fluids
18
(4), 042105.
Lappa, M.
2010
Thermal Convection: Patterns, Evolution and Stability. John Wiley & Sons.
Lappa, M.
2012
Rotating Thermal Flows in Natural and Industrial Processes. John Wiley & Sons.
Lappa, M.
2011
A theoretical and numerical multiscale framework for the analysis of pattern formation in protein crystal engineering. Intl J. Multiscale Comput. Engng
9
(2), 149–174.
Lappa, M.
2013a
Assessment of the role of axial vorticity in the formation of article accumulation structures in supercritical Marangoni and hybrid thermocapillary-rotation-driven flows. Phys. Fluids
25
(1), 012101.
Lappa, M.
2013b
On the existence and multiplicity of one-dimensional solid particle attractors in time-dependent Rayleigh–Bénard convection. Chaos
23
(1), 013105.
Lappa, M. & Carotenuto, L.
2003
Effect of convective disturbances induced by g-jitter on the periodic precipitation of lysozyme. Microgravity Sci. Technol.
14
(2), 41–56.
Lappa, M., Castagnolo, D. & Carotenuto, L.
2002
Sensitivity of the non-linear dynamics of lysozyme ‘Liesegang rings’ to small asymmetries. Physica A
314
(1–4), 623–635.
Lappa, M. & Piccolo, C.
2004
Higher modes of mixed buoyant-Marangoni unstable convection originated from a droplet dissolving in a liquid/liquid system with miscibility gap. Phys. Fluids
16
(12), 4262–4272.
Lappa, M., Piccolo, C. & Carotenuto, L.
2004
Mixed buoyant-Marangoni convection due to dissolution of a droplet in a liquid–liquid system with miscibility gap. Eur. J. Mech. (B/Fluids)
23
(5), 781–794.
Lappa, M. & Savino, R.
1999
Parallel solution of the 3D Marangoni flow instabilities in liquid bridges. Intl J. Numer. Meth. Fluids
31
(8), 911–925.
Lappa, M. & Savino, R.
2002
3D analysis of crystal/melt interface shape and Marangoni flow instability in solidifying liquid bridges. J. Comput. Phys.
180
(2), 751–774.
Lappa, M., Savino, R. & Monti, R.
2000
Influence of buoyancy forces on Marangoni flow instabilities in liquid bridges. Intl J. Numer. Meth. Heat Fluid Flow
10
(7), 721–749.
Lappa, M., Yasushiro, S. & Imaishi, N.
2003
3D numerical simulation of on ground Marangoni flow instabilities in liquid bridges of low Prandtl number fluid. Intl J. Numer. Meth. Heat Fluid Flow
13
(3), 309–340.
Lighthill, M. J.
1954
The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. Proc. R. Soc. Lond. Ser. A
224, 1–23.
Lizée, A. & Alexander, J. I. D.
1997
Chaotic thermovibrational flow in a laterally heated cavity. Phys. Rev. E
56, 4152–4156.
Mark, A., Rundqvist, R. & Edelvik, F.
2011
Comparison between different immersed boundary conditions for simulation of complex fluid flows. Fluid Dyn. Mater. Process.
7
(3), 241–258.
Maxey, M. R., Patel, B. K., Chang, E. J. & Wang, L.-P.
1997
Simulations of dispersed turbulent multiphase flow. Fluid Dyn. Res.
20
(1–6), 143–156.
Maxey, M. R. & Riley, J. J.
1983
Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids
26, 883–889.
Mei, R., Lawrence, J. & Adrian, J.
1991
Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity. J. Fluid Mech.
233, 613–631.
Melnikov, D., Pushkin, D. & Shevtsova, V.
2011
Accumulation of particles in time-dependent thermocapillary flow in a liquid bridge. Modeling of experiments. Eur. Phys. J. Special Topics
192, 29–39.
Michaelides, E. E.
1997
Review – the transient equation of motion for particles, bubbles, and droplets. J. Fluids Engng
119, 233–247.
Monti, R., Savino, R. & Lappa, M.
1998 Microgravity sensitivity of typical fluid physics experiment, presented at the 17th Microgravity Measurements Group Meeting, Cleveland, Ohio, 24–26 March 1998, published in the Meeting Proceedings in NASA CP-1998-208414, 23, pp. 1–15 (ISSN: 0191-7811).
Monti, R., Savino, R. & Lappa, M.
2001
On the convective disturbances induced by g-jitter on the space station. Acta Astron.
48
(5–12), 603–615.
Parsa, A. & Saghir, M. Z.
2012
Fluid flow behavior of a binary mixture under the influence of external disturbances using different density models. Fluid Dyn. Mater. Process.
8
(1), 27–50.
Pasquero, C., Provenzale, A. & Spiegel, E. A.
2003
Suspension and fall of heavy particles in random two-dimensional flow. Phys. Rev. Lett.
91, 054502.
Pushkin, D., Melnikov, D. & Shevtsova, V.
2011
Ordering of small particles in one-dimensional coherent structures by time-periodic flows. Phys. Rev. Lett.
106, 234501.
Raju, N. & Meiburg, E.
1995
The accumulation and dispersion of heavy particles in forced two-dimensional mixing layers. Part 2: the effect of gravity. Phys. Fluids
7, 1241–1264.
Sapsis, T. & Haller, G.
2010
Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows. Chaos
20, 017515.
Savino, R. & Lappa, M.
2003
Assessment of the thermovibrational theory: application to
-jitter on the Space Station. J. Spacecr. Rockets
40
(2), 201–210.
Savino, R., Paterna, D. & Lappa, M.
2003
Marangoni flotation of liquid droplets. J. Fluid Mech.
479, 307–326.
Saw, E. W., Shaw, R. A., Ayyalasomayajula, S., Chuang, P. Y. & Gylfason, A.
2008
Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett.
100, 214501.
Schwabe, D. & Mizev, A. I.
2011
Particles of different density in thermocapillary liquid bridges under the action of travelling and standing hydrothermal waves. Eur. Phys. J. Special Topics
192, 13–27.
Schwabe, D., Mizev, A. I., Tanaka, S. & Kawamura, H.
2006
Particle accumulation structures in time-dependent thermocapillary flow in a liquid bridge under microgravity. Microgravity Sci. Technol.
18
(3–4), 117–127.
Schwabe, D., Mizev, A. I., Udhayasankar, M. & Tanaka, S.
2007
Formation of dynamic particle accumulation structures in oscillatory thermocapillary flow in liquid bridges. Phys. Fluids
19
(7), 072102.
Shevtsova, V., Gaponenko, Y. A. & Nepomnyashchy, A.
2013
Thermocapillary flow regimes and instability caused by a gas stream along the interface. J. Fluid Mech.
714, 644–670.
Shevtsova, V., Kuhlmann, H., Montanero, J. M., Nepomnyaschy, A., Lappa, M., Schwabe, D., Matsumoto, S., Nishino, K., Ueno, I. & Yoda, S.
2008 Preparation of Space experiment in the FPEF facility: heat transfer at the interface in the systems with cylindrical symmetry, 26th International Symposium on Space Technology and Science, 1–8 June 2008, Hamamatsu City (ISTS Proceedings).
Shevtsova, V., Mialdun, A., Kawamura, H., Ueno, I., Nishino, K. & Lappa, M.
2011
Onset of hydrothermal instability in liquid bridge. Experimental benchmark. Fluid Dyn. Mater. Process.
7
(1), 1–28.
Simic-Stefani, S., Kawaji, M. & Hu, H.
2006
G-jitter induced motion of a protein crystal under microgravity. J. Cryst. Growth
294, 373–384.
Srinivasan, S. & Saghir, M. Z.
2011
Impact of the vibrations on soret separation in binary and ternary mixtures. Fluid Dyn. Mater. Process.
7
(2), 201–216.
Sun, J., Carlson, F. M., Regel, L. L., Wilcox, W. R., Lal, R. B. & Trolinger, J. D.
1994
Particle motion in the fluid experiment system in microgravity. Acta Astron.
34, 261–269.
Tanaka, S., Kawamura, H., Ueno, I. & Schwabe, D.
2006
Flow structure and dynamic particle accumulation in thermocapillary convection in a liquid bridge. Phys. Fluids
18, 067103.
Thomson, J. R., Casademunt, J., Drolet, F. & Vinals, J.
1997
Coarsening of solid–liquid mixtures in a random acceleration field. Phys. Fluids
9
(5), 1336–1343.
Tunstall, E. B. & Houghton, G.
1968
Retardation of falling spheres by hydrodynamic oscillations. Chem. Engng Sci.
23, 1067–1081.
Uchiyama, T.
2011
Grid-free vortex method for particle-laden gas flow. Fluid Dyn. Mater. Process.
7
(4), 371–388.
Ueno, I., Abe, Y., Noguchi, K. & Kawamura, H.
2008
Dynamic particle accumulation structure (PAS) in half-zone liquid bridge – reconstruction of particle motion by 3-D PTV. Adv. Space Res.
41
(12), 2145–2149.
Ueno, I., Ono, Y., Nagano, D., Tanaka, S. & Kawamura, H.
2000 Modal oscillatory structure and dynamic particle accumulation in liquid-bridge Marangoni convection, in ‘4th JSME–KSME Thermal Engineering Conference’, JSME, Kobe, Japan.
Vojir, D. J. & Michaelides, E. E.
1994
The effect of the history term on the motion of rigid spheres in a viscous fluid. Intl J. Multiphase Flow
20, 547–556.
Yan, Y., Jules, K. & Saghir, M. Z.
2007
Comparative study of g-jitter effect on thermal diffusion aboard the international space station. Fluid Dyn. Mater. Process.
3
(3), 231–246.
Yan, Y., Shevtsova, V. & Saghir, M. Z.
2005
Numerical study of low frequency g-jitter effect on thermal diffusion. Fluid Dyn. Mater. Process.
1
(4), 315–328.
Zaichik, L., Alipchenkov, V. M. & Sinaiski, E. G.
2008
Particles in Turbulent Flows. Wiley-VCH Verlag GmbH & Co. KGaA.
Zinchenko, A. Z.
1994
An efficient algorithm for calculating multiparticle thermal interaction in a concentrated dispersion of spheres. J. Comput. Phys.
111, 120–134.
Zohdi, T. I.
2007
An Introduction to Modeling and Simulation of Particulate Flows. SIAM.