Skip to main content
    • Aa
    • Aa

On the variety of particle accumulation structures under the effect of g-jitters

  • Marcello Lappa (a1)

The present analysis extends the author’s earlier work (Lappa, Phys. Fluids, vol. 25, 2003, 012101; Lappa, Chaos, vol. 23, 2003, 013105) on the properties of patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow (with a toroidal structure and a travelling wave propagating in the azimuthal direction) by considering the potential impact of ‘vibrations’ (g-jitters) on such dynamics. It is shown that a kaleidoscope of possible variants exist whose nature and variety calls for a concerted analysis using the tools of computational fluid dynamics in synergy with dimensional arguments and existing theories on the effect of periodic accelerations on fluid systems. A possible categorization of the observed phenomena is introduced according to the type and scale of ‘defects’ displayed by the emerging particle aggregates with respect to unperturbed (vibration-less) conditions. It is shown that the resulting degree of ‘turbulence’ depends essentially on the direction $(\phi )$ , amplitude $(\gamma )$ and frequency $(\varpi )$ of the applied inertial disturbance. A range of amplitudes and frequencies exist where the formation of recognizable particle structures is prevented. A quantitative map (in the $\gamma \text{{\ndash}} \varpi $ plane) for their occurrence is derived with the express intent of supporting the optimization of future experiments to be performed in space.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. A. Atkinson 1989 An Introduction to Numerical Analysis, 2nd ed. John Wiley & Sons.

A. Babiano , J. H. E. Cartwright , O. Piro & A. Provenzale 2000 Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems. Phys. Rev. Lett. 84, 57645767.

M. H. I. Baird , M. G. Senior & R. J. Thompson 1967 Terminal velocities of spherical particles in a vertically oscillating liquid. Chem. Engng Sci. 22, 551558.

F. Balboa Usabiaga , I. Pagonabarraga & R. Delgado-Buscalioni 2013 Inertial coupling for point particle fluctuating hydrodynamics. J. Comput. Phys. 235, 701722.

E. Balkovsky , G. Falkovich & A. Fouxon 2001 Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86, 27902793.

I. J. Benczik , Z. Toroczkai & T. Tél 2002 Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick. Phys. Rev. Lett. 89 (16), 164501.

S. Biringen & G. Danabasoglu 1990 Computation of convective flows with gravity modulation in rectangular cavities. J. Thermophys. 4, 357365.

F. H. Busse , G. Pfister & D. Schwabe 1998 Formation of dynamical structures in axisymmetric fluid systems. In Evolution of Spontaneous Structures in Dissipative Continuous Systems, Lecture Notes in Physics, vol. 55, pp. 86126.

L. Carotenuto , C. Piccolo , D. Castagnolo , M. Lappa & J. M. Garcìa-Ruiz 2002 Experimental observations and numerical modelling of diffusion-driven crystallisation processes. Acta Cryst. D 58, 16281632.

F. M. Coimbra & R. H. Rangel 2001 Spherical particle motion in harmonic Stokes flows. AIAA J. 39 (9), 16731682.

D. Di Carlo , J. F. Edd , K. J. Humphry , H. A. Stone & M. Toner 2009 Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102, 094503.

O. A. Druzhinin & L. A. Ostrovsky 1994 The influence of basset force on particle dynamics in two dimensional flows. Physica D 76, 3443.

M. P. Dyko & K. Vafai 2007 Effects of gravity modulation on convection in a horizontal annulus. Intl J. Heat Mass Transfer 50, 348360.

G. Z. Gershuni & E. M. Zhukhovitskii 1981 Convective instability of a fluid in a vibration field under conditions of weightlessness. Fluid Dyn. 16 (4), 498504.

G. Haller & T. Sapsis 2012 Lagrangian coherent structures and the smallest finite-time Lyapunov exponent. Chaos 21 (2), 023115.

S. Hassan & M. Kawaji 2008 The effects of vibrations on particle motion in a viscous fluid cell. J. Appl. Mech. 75, 031012.

S. Hassan , T. P. Lyubimova , D. V. Lyubimov & M. Kawaji 2006a Motion of a sphere suspended in a vibrating liquid-filled container. J. Appl. Mech. 73, 7278.

S. Hassan , T. P. Lyubimova , D. V. Lyubimov & M. Kawaji 2006b Effects of vibrations on particle motion near a wall: existence of attraction force. Intl J. Multiphase Flow 32 (9), 10371054.

R. A. Herringe 1977 A study of particle motion induced by two-dimensional liquid oscillations. Intl J. Multiphase Flow 3 (3), 243253.

K. Hirata , T. Sasaki & H. Tanigawa 2001 Vibrational effects on convection in a square cavity at zero gravity. J. Fluid Mech. 445, 327344.

A. T. Hjelmfelt & L. F. Mockros 1966 Motion of discrete particles in a turbulent fluid. Appl. Sci. Res. 16 (1), 149161.

G. Houghton 1961 The behaviour of particles in a sinusoidal vector field. Proc. R. Soc. A 272, 3343.

S. Ikeda 1989 Fall velocity of single spheres in vertically oscillating fluids. Fluid Dyn. Res. 5, 203216.

Y. Kamotani , A. Prasad & S. Ostrach 1981 Thermal convection in an enclosure due to vibrations aboard spacecraft. AIAA J. 19, 511516.

D. Kleckner & W. T. M. Irvine 2013 Creation and dynamics of knotted vortices. Nature Phys. doi:10.1038/nphys2560.

D. Langbein 1991 Motion of ensembles of spherical particles in a fluid due to $g$-jitter. Adv. Space Res. 11 (7), 189196.

M. Lappa 2003a Three-dimensional numerical simulation of Marangoni flow instabilities in floating zones laterally heated by an equatorial ring. Phys. Fluids 15 (3), 776789.

M. Lappa 2003b Growth and mutual interference of protein seeds under reduced gravity conditions. Phys. Fluids 15 (4), 10461057.

M. Lappa 2004 Combined effect of volume and gravity on the three-dimensional flow instability in non-cylindrical floating zones heated by an equatorial ring. Phys. Fluids 16 (2), 331343.

M. Lappa 2006 Oscillatory convective structures and solutal jets originated from discrete distributions of droplets in organic alloys with a miscibility gap. Phys. Fluids 18 (4), 042105.

M. Lappa 2012 Rotating Thermal Flows in Natural and Industrial Processes. John Wiley & Sons.

M. Lappa 2011 A theoretical and numerical multiscale framework for the analysis of pattern formation in protein crystal engineering. Intl J. Multiscale Comput. Engng 9 (2), 149174.

M. Lappa 2013a Assessment of the role of axial vorticity in the formation of article accumulation structures in supercritical Marangoni and hybrid thermocapillary-rotation-driven flows. Phys. Fluids 25 (1), 012101.

M. Lappa 2013b On the existence and multiplicity of one-dimensional solid particle attractors in time-dependent Rayleigh–Bénard convection. Chaos 23 (1), 013105.

M. Lappa & L. Carotenuto 2003 Effect of convective disturbances induced by g-jitter on the periodic precipitation of lysozyme. Microgravity Sci. Technol. 14 (2), 4156.

M. Lappa , D. Castagnolo & L. Carotenuto 2002 Sensitivity of the non-linear dynamics of lysozyme ‘Liesegang rings’ to small asymmetries. Physica A 314 (1–4), 623635.

M. Lappa & C. Piccolo 2004 Higher modes of mixed buoyant-Marangoni unstable convection originated from a droplet dissolving in a liquid/liquid system with miscibility gap. Phys. Fluids 16 (12), 42624272.

M. Lappa , C. Piccolo & L. Carotenuto 2004 Mixed buoyant-Marangoni convection due to dissolution of a droplet in a liquid–liquid system with miscibility gap. Eur. J. Mech. (B/Fluids) 23 (5), 781794.

M. Lappa & R. Savino 1999 Parallel solution of the 3D Marangoni flow instabilities in liquid bridges. Intl J. Numer. Meth. Fluids 31 (8), 911925.

M. Lappa & R. Savino 2002 3D analysis of crystal/melt interface shape and Marangoni flow instability in solidifying liquid bridges. J. Comput. Phys. 180 (2), 751774.

M. Lappa , R. Savino & R. Monti 2000 Influence of buoyancy forces on Marangoni flow instabilities in liquid bridges. Intl J. Numer. Meth. Heat Fluid Flow 10 (7), 721749.

M. Lappa , S. Yasushiro & N. Imaishi 2003 3D numerical simulation of on ground Marangoni flow instabilities in liquid bridges of low Prandtl number fluid. Intl J. Numer. Meth. Heat Fluid Flow 13 (3), 309340.

M. J. Lighthill 1954 The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. Proc. R. Soc. Lond. Ser. A 224, 123.

A. Lizée & J. I. D. Alexander 1997 Chaotic thermovibrational flow in a laterally heated cavity. Phys. Rev. E 56, 41524156.

M. R. Maxey , B. K. Patel , E. J. Chang & L.-P. Wang 1997 Simulations of dispersed turbulent multiphase flow. Fluid Dyn. Res. 20 (1–6), 143156.

M. R. Maxey & J. J. Riley 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.

D. Melnikov , D. Pushkin & V. Shevtsova 2011 Accumulation of particles in time-dependent thermocapillary flow in a liquid bridge. Modeling of experiments. Eur. Phys. J. Special Topics 192, 2939.

E. E. Michaelides 1997 Review – the transient equation of motion for particles, bubbles, and droplets. J. Fluids Engng 119, 233247.

R. Monti , R. Savino & M. Lappa 2001 On the convective disturbances induced by g-jitter on the space station. Acta Astron. 48 (5–12), 603615.

C. Pasquero , A. Provenzale & E. A. Spiegel 2003 Suspension and fall of heavy particles in random two-dimensional flow. Phys. Rev. Lett. 91, 054502.

D. Pushkin , D. Melnikov & V. Shevtsova 2011 Ordering of small particles in one-dimensional coherent structures by time-periodic flows. Phys. Rev. Lett. 106, 234501.

N. Raju & E. Meiburg 1995 The accumulation and dispersion of heavy particles in forced two-dimensional mixing layers. Part 2: the effect of gravity. Phys. Fluids 7, 12411264.

T. Sapsis & G. Haller 2010 Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows. Chaos 20, 017515.

R. Savino & M. Lappa 2003 Assessment of the thermovibrational theory: application to $g$-jitter on the Space Station. J. Spacecr. Rockets 40 (2), 201210.

E. W. Saw , R. A. Shaw , S. Ayyalasomayajula , P. Y. Chuang & A. Gylfason 2008 Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100, 214501.

D. Schwabe & A. I. Mizev 2011 Particles of different density in thermocapillary liquid bridges under the action of travelling and standing hydrothermal waves. Eur. Phys. J. Special Topics 192, 1327.

D. Schwabe , A. I. Mizev , S. Tanaka & H. Kawamura 2006 Particle accumulation structures in time-dependent thermocapillary flow in a liquid bridge under microgravity. Microgravity Sci. Technol. 18 (3–4), 117127.

D. Schwabe , A. I. Mizev , M. Udhayasankar & S. Tanaka 2007 Formation of dynamic particle accumulation structures in oscillatory thermocapillary flow in liquid bridges. Phys. Fluids 19 (7), 072102.

S. Simic-Stefani , M. Kawaji & H. Hu 2006 G-jitter induced motion of a protein crystal under microgravity. J. Cryst. Growth 294, 373384.

J. Sun , F. M. Carlson , L. L. Regel , W. R. Wilcox , R. B. Lal & J. D. Trolinger 1994 Particle motion in the fluid experiment system in microgravity. Acta Astron. 34, 261269.

S. Tanaka , H. Kawamura , I. Ueno & D. Schwabe 2006 Flow structure and dynamic particle accumulation in thermocapillary convection in a liquid bridge. Phys. Fluids 18, 067103.

J. R. Thomson , J. Casademunt , F. Drolet & J. Vinals 1997 Coarsening of solid–liquid mixtures in a random acceleration field. Phys. Fluids 9 (5), 13361343.

E. B. Tunstall & G. Houghton 1968 Retardation of falling spheres by hydrodynamic oscillations. Chem. Engng Sci. 23, 10671081.

I. Ueno , Y. Abe , K. Noguchi & H. Kawamura 2008 Dynamic particle accumulation structure (PAS) in half-zone liquid bridge – reconstruction of particle motion by 3-D PTV. Adv. Space Res. 41 (12), 21452149.

D. J. Vojir & E. E. Michaelides 1994 The effect of the history term on the motion of rigid spheres in a viscous fluid. Intl J. Multiphase Flow 20, 547556.

L. Zaichik , V. M. Alipchenkov & E. G. Sinaiski 2008 Particles in Turbulent Flows. Wiley-VCH Verlag GmbH & Co. KGaA.

A. Z. Zinchenko 1994 An efficient algorithm for calculating multiparticle thermal interaction in a concentrated dispersion of spheres. J. Comput. Phys. 111, 120134.

T. I. Zohdi 2007 An Introduction to Modeling and Simulation of Particulate Flows. SIAM.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 65 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th August 2017. This data will be updated every 24 hours.