Skip to main content

On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity


We investigate the single-point probability density function of the velocity in three-dimensional stationary and decaying homogeneous isotropic turbulence. To this end, we apply the statistical framework of the Lundgren–Monin–Novikov hierarchy combined with conditional averaging, identifying the quantities that determine the shape of the probability density function. In this framework, the conditional averages of the rate of energy dissipation, the velocity diffusion and the pressure gradient with respect to velocity play a key role. Direct numerical simulations of the Navier–Stokes equation are used to complement the theoretical results and assess deviations from Gaussianity.

Corresponding author
Email address for correspondence:
Hide All
Batchelor, G. K. 1953 The theory of homogeneous turbulence. Cambridge University Press.
Batchelor, G. K. & Townsend, A. A. 1948 Decay of isotropic turbulence in the initial period. Proc. R. Soc. Lond. A, Math. Phys. Sci. 193 (1035), 539558.
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1987 Spectral Methods in Fluid Dynamics. Springer.
Ching, E. S. C. 1996 General formula for stationary or statistically homogeneous probability density functions. Phys. Rev. E 53 (6), 58995903.
Falkovich, G. & Lebedev, V. 1997 Single-point velocity distribution in turbulence. Phys. Rev. Lett. 79 (21), 41594161.
George, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids A: Fluid Dyn. 4 (7), 14921509.
Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14 (3), 10651081.
Hosokawa, I. 2008 One-point velocity statistics in decaying homogeneous isotropic turbulence. Phys. Rev. E 78 (6), 066312.
Hou, T. Y. & Li, R. 2007 Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226, 379397.
Ishida, T., Davidson, P. A. & Kaneda, Y. 2006 On the decay of isotropic turbulence. J. Fluid Mech. 564, 455475.
Jimenez, J. 1998 Turbulent velocity fluctuations need not be Gaussian. J. Fluid Mech. 376 (1), 139147.
Kármán, T. de & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A, Math. Phys. Sci. 164 (917), 192215.
Kolmogorov, A. N. 1941 On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31 (6), 538541.
Lundgren, T. S. 1967 Distribution functions in the statistical theory of turbulence. Phys. Fluids 10 (5), 969975.
Monin, A. S. 1967 Equations of turbulent motion. Prikl. Mat. Mekh. 31 (6), 1057.
Noullez, A., Wallace, G., Lempert, W., Miles, R. B. & Frisch, U. 1997 Transverse velocity increments in turbulent flow using the relief technique. J. Fluid Mech. 339 (1), 287307.
Novikov, E. A. 1968 Kinetic equations for a vortex field. Sov. Phys. Dokl. 12 (11), 10061008.
Novikov, E. A. 1993 A new approach to the problem of turbulence, based on the conditionally averaged Navier–Stokes equations. Fluid Dyn. Res. 12 (2), 107126.
Novikov, E. A. & Dommermuth, D. G. 1994 Conditionally averaged dynamics of turbulence. Mod. Phys. Lett. B 8 (23).
Perot, J. B. 2010 Determination of the Decay Exponent in Mechanically Stirred Isotropic Turbulence. arXiv:1007.5043.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Robertson, H. P. 1940 The invariant theory of isotropic turbulence. Proc. Camb. Phil. Soc. 36, 209.
Saffman, P. G. 1967 Note on decay of homogeneous turbulence. Phys. Fluids 10 (6), 13491349.
Shu, C. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (12), 379397.
Tatsumi, T. & Yoshimura, T. 2004 Inertial similarity of velocity distributions in homogeneous isotropic turbulence. Fluid Dyn. Res. 35 (2), 123158.
Tennekes, H. & Lumley, J. L. 1983 A First Course in Turbulence. MIT Press.
Ulinich, L. R. & Lyubimov, B. Y. 1969 The statistical theory of turbulence of an incompressible fluid at large Reynolds number. Sov. Phys. JETP 28 (3), 494500.
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225 (1), 120.
Wilczek, M. & Friedrich, R. 2009 Dynamical origins for non-Gaussian vorticity distributions in turbulent flows. Phys. Rev. E 80 (1), 016316.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 61 *
Loading metrics...

Abstract views

Total abstract views: 232 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st March 2018. This data will be updated every 24 hours.