Skip to main content
    • Aa
    • Aa

On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity


We investigate the single-point probability density function of the velocity in three-dimensional stationary and decaying homogeneous isotropic turbulence. To this end, we apply the statistical framework of the Lundgren–Monin–Novikov hierarchy combined with conditional averaging, identifying the quantities that determine the shape of the probability density function. In this framework, the conditional averages of the rate of energy dissipation, the velocity diffusion and the pressure gradient with respect to velocity play a key role. Direct numerical simulations of the Navier–Stokes equation are used to complement the theoretical results and assess deviations from Gaussianity.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. K. Batchelor & A. A. Townsend 1948 Decay of isotropic turbulence in the initial period. Proc. R. Soc. Lond. A, Math. Phys. Sci. 193 (1035), 539558.

E. S. C. Ching 1996 General formula for stationary or statistically homogeneous probability density functions. Phys. Rev. E 53 (6), 58995903.

G. Falkovich & V. Lebedev 1997 Single-point velocity distribution in turbulence. Phys. Rev. Lett. 79 (21), 41594161.

W. K. George 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids A: Fluid Dyn. 4 (7), 14921509.

T. Gotoh , D. Fukayama & T. Nakano 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14 (3), 10651081.

I. Hosokawa 2008 One-point velocity statistics in decaying homogeneous isotropic turbulence. Phys. Rev. E 78 (6), 066312.

T. Y. Hou & R. Li 2007 Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226, 379397.

T. Ishida , P. A. Davidson & Y. Kaneda 2006 On the decay of isotropic turbulence. J. Fluid Mech. 564, 455475.

J. Jimenez 1998 Turbulent velocity fluctuations need not be Gaussian. J. Fluid Mech. 376 (1), 139147.

T. Kármán de & L. Howarth 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A, Math. Phys. Sci. 164 (917), 192215.

T. S. Lundgren 1967 Distribution functions in the statistical theory of turbulence. Phys. Fluids 10 (5), 969975.

A. Noullez , G. Wallace , W. Lempert , R. B. Miles & U. Frisch 1997 Transverse velocity increments in turbulent flow using the relief technique. J. Fluid Mech. 339 (1), 287307.

E. A. Novikov 1993 A new approach to the problem of turbulence, based on the conditionally averaged Navier–Stokes equations. Fluid Dyn. Res. 12 (2), 107126.

E. A. Novikov & D. G. Dommermuth 1994 Conditionally averaged dynamics of turbulence. Mod. Phys. Lett. B 8 (23).

S. B. Pope 2000 Turbulent Flows. Cambridge University Press.

H. P. Robertson 1940 The invariant theory of isotropic turbulence. Proc. Camb. Phil. Soc. 36, 209.

P. G. Saffman 1967 Note on decay of homogeneous turbulence. Phys. Fluids 10 (6), 13491349.

C. Shu & S. Osher 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (12), 379397.

T. Tatsumi & T. Yoshimura 2004 Inertial similarity of velocity distributions in homogeneous isotropic turbulence. Fluid Dyn. Res. 35 (2), 123158.

A. Vincent & M. Meneguzzi 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225 (1), 120.

M. Wilczek & R. Friedrich 2009 Dynamical origins for non-Gaussian vorticity distributions in turbulent flows. Phys. Rev. E 80 (1), 016316.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 36 *
Loading metrics...

Abstract views

Total abstract views: 143 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st September 2017. This data will be updated every 24 hours.