Skip to main content Accesibility Help

On the Weis-Fogh mechanism of lift generation

  • M. J. Lighthill (a1)

Weis-Fogh (1973) proposed a new mechanism of lift generation of fundamental interest. Surprisingly, it could work even in inviscid two-dimensional motions starting from rest, when Kelvin's theorem states that the total circulation round a body must vanish, but does not exclude the possibility that if the body breaks into two pieces then there may be equal and opposite circulations round them, each suitable for generating the lift required in the pieces’ subsequent motions! The ‘fling’ of two insect wings of chord c (figure 1) turning with angular velocity Ω generates irrotational motions associated with the sucking of air into the opening gap which are calculated in § 2 as involving circulations −0·69Ωc2 and + 0.69Ωc2 around the wings when their trailing edges, which are stagnation points of those irrotational motions, break apart (position (f)). Viscous modifications to this irrotational flow pattern by shedding of vorticity at the boundary generate (§ 3) a leading-edge separation bubble, and tend to increase slightly the total bound vorticity. Its role in a three-dimensional picture of the Weis-Fogh mechanism of lift generation, involving formation of trailing vortices at the wing tips, and including the case of a hovering insect like Encarsia formosa moving those tips in circular paths, is investigated in § 4. The paper ends with the comment that the far flow field of such very small hovering insects should take the form of the exact solution (Landau 1944; Squire 1951) of the Navier-Stokes equations for the effect of a concentrated force (the weight mg of the animal) acting on a fluid of kinematic viscosity v and density p, whenever the ratio mg/pv2 is small enough for that jet-type induced motion to be stable.

Hide All
Landau, L. D. 1944 Dokl. Akad. Nauk. SSSR, 43, 286.
Lighthill, M. J. 1963 In Laminar Boundary Layers (ed. L. Rosenhead), chap. 2, $1.7. Oxford University Press.
Prandtl, L. 1918 Tragflügeltheorie. Nachr. Ges. Wiss. Göttingen, pp. 107, 451.
Squire, H. B. 1951 Quart. J. Mech. Appl. Math. 4, 321.
Wagner, H. 1925 Z. angew. Math. Mech. 5, 17.
Weis-Fogh, T. 1973 J. Exp. Biol. (to appear).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed