Skip to main content Accessibility help
×
×
Home

Opposition control within the resolvent analysis framework

  • M. Luhar (a1), A. S. Sharma (a2) and B. J. McKeon (a1)
Abstract

This paper extends the resolvent analysis of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) to consider flow control techniques that employ linear control laws, focusing on opposition control (Choi, Moin & Kim, J. Fluid Mech., vol. 262, 1994, pp. 75–110) as an example. Under this formulation, the velocity field for turbulent pipe flow is decomposed into a series of highly amplified (rank-1) response modes, identified from a gain analysis of the Fourier-transformed Navier–Stokes equations. These rank-1 velocity responses represent propagating structures of given streamwise/spanwise wavelength and temporal frequency, whose wall-normal footprint depends on the phase speed of the mode. Opposition control, introduced via the boundary condition on wall-normal velocity, affects the amplification characteristics (and wall-normal structure) of these response modes; a decrease in gain indicates mode suppression, which leads to a decrease in the drag contribution from that mode. With basic assumptions, this rank-1 model reproduces trends observed in previous direct numerical simulation and large eddy simulation, without requiring high-performance computing facilities. Further, a wavenumber–frequency breakdown of control explains the deterioration of opposition control performance with increasing sensor elevation and Reynolds number. It is shown that slower-moving modes localized near the wall (i.e. attached modes) are suppressed by opposition control. Faster-moving detached modes, which are more energetic at higher Reynolds number and more likely to be detected by sensors far from the wall, are further amplified. These faster-moving modes require a phase lag between sensor and actuator velocity for suppression. Thus, the effectiveness of opposition control is determined by a trade-off between the modes detected by the sensor. However, it may be possible to develop control strategies optimized for individual modes. A brief exploration of such mode-optimized control suggests the potential for significant performance improvement.

Copyright
Corresponding author
Email address for correspondence: mluhar@cantab.net
References
Hide All
Bechert, D. W., Bruse, M., Hage, W., van der Hoeven, J. G. T. & Hoppe, G. 1997 Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.
Brandt, L., Sipp, D., Pralits, J. O. & Marquet, O. 2011 Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687, 503528.
Butler, K. M. & Farrell, B. F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids 5 (3), 774777.
Cattafesta, L. & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.
Choi, H., Park, H., Sagong, W. & Lee, S. 2012 Biomimetic flow control based on morphological features of living creatures. Phys. Fluids 24, 121302.
Chung, Y. M. & Talha, T. 2011 Effectiveness of active flow control for turbulent skin friction drag reduction. Phys. Fluids 23, 025102.
Duque-Daza, C. A., Baig, M. F., Lockerby, D. A., Chernyshenko, S. I. & Davies, C. 2012 Modelling turbulent skin-friction control using linearized Navier–Stokes equations. J. Fluid Mech. 702, 403414.
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), 7376.
Fukagata, K. & Kasagi, N. 2002 Active control for drag reduction in turbulent pipe flow. InEngineering Turbulence Modelling and Measurements (ed. Rodi, W. & Fueyo, N.), vol. 5, pp. 607616. Elsevier Science.
Fukagata, K., Kern, S., Chatelain, P., Koumoutsakos, P. & Kasagi, N. 2008 Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9 (35), 117.
Gad-el Hak, M. 2000 Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press.
Hammond, E. P., Bewley, T. R. & Moin, P. 1998 Observed mechanisms for turbulence attenuation and enhancement in opposition controlled wall-bounded flows. Phys. Fluids 10 (9), 24212423.
Henningson, D. S. & Reddy, S. C. 1994 On the role of linear mechanisms in transition to turbulence. Phys. Fluids 6 (3), 13961398.
Högberg, M., Bewley, T. R. & Henningson, D. S. 2003 Relaminarization of $Re_{\tau }=100$ turbulence using gain scheduling and linear state-feedback control. Phys. Fluids 15, 35723575.
Joshi, S. S., Speyer, J. L. & Kim, J. 1997 A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow. J. Fluid Mech. 332, 157184.
Kim, J. 2011 Physics and control of wall turbulence for drag reduction. Phil. Trans. R. Soc. A 369, 13961411.
Koumoutsakos, P. 1999 Vorticity flux control for a turbulent channel flow. Phys. Fluids 11, 248250.
Lim, J. & Kim, J. 2004 A singular value analysis of boundary layer control. Phys. Fluids 16, 19801988.
Luhar, M., Sharma, A. S. & McKeon, B. J.2013 Wall pressure fluctuations induced by coherent structures in turbulent pipe flow. In Eighth International Symposium on Turbulence and Shear Flow Phenomena (TSFP-8), Poitiers, France, 28–30 August.
McKeon, B. J., Jacobi, I. & Sharma, A. S. 2013 Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids 25, 031301.
McKeon, B. J., Li, J., Jiang, W., Morrison, J. F. & Smits, A. J. 2004 Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135147.
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.
Meseguer, A. & Trefethen, L. N. 2003 Linearized pipe flow to Reynolds number $10^7$ . J. Comput. Phys. 186 (1), 178197.
Min, T., Kang, S. M., Speyer, J. L. & Kim, J. 2006 Sustained sub-laminar drag in a fully-developed channel flow. J. Fluid Mech. 558, 309318.
Moarref, R. & Jovanovic, M. 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.
Moarref, R., Sharma, A. S., Tropp, J. A. & McKeon, B. J. 2013 Model-based scaling and prediction of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.
Pamies, M., Garnier, E., Merlen, A. & Sagaut, P. 2007 Response of a spatially developing turbulent boundary layer to active control strategies in the framework of opposition control. Phys. Fluids 19, 108102.
Quadrio, M. & Ricco, P. 2004 Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251271.
Quadrio, M., Ricco, P. & Viotti, C. 2009 Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161178.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary-layer. Annu. Rev. Fluid Mech. 23, 601639.
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.
Sharma, A. S. & McKeon, B. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.
Sharma, A. S., Morrison, J. F., McKeon, B. J., Limebeer, D. J. N., Koberg, W. H. & Sherwin, S. J. 2011 Relaminarisation of $Re_{\tau }=100$ channel flow with globally stabilizing linear feedback control. Phys. Fluids 23, 125105.
Smits, A. J., Monty, J., Hultmark, M., Bailey, S. C. C., Hutchins, N. & Marusic, I. 2011 Spatial resolution correction for wall-bounded turbulence measurements. J. Fluid Mech. 676, 4153.
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.
Wu, X. & Moin, P. 2008 A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81112.
Xu, S., Rempfer, D. & Lumley, J. 2003 Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478, 1134.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed