Skip to main content
×
Home

Optimal convection cooling flows in general 2D geometries

Abstract

We generalize a recent method for computing optimal 2D convection cooling flows in a horizontal layer to a wide range of geometries, including those relevant for technological applications. We write the problem in a conformal pair of coordinates which are the pure conduction temperature and its harmonic conjugate. We find optimal flows for cooling a cylinder in an annular domain, a hot plate embedded in a cold surface, and a channel with a hot interior and cold exterior. With a constraint of fixed kinetic energy, the optimal flows are all essentially the same in the conformal coordinates. In the physical coordinates, they consist of vortices ranging in size from the length of the hot surface to a small cutoff length at the interface of the hot and cold surfaces. With the constraint of fixed enstrophy (or fixed rate of viscous dissipation), a geometry-dependent metric factor appears in the equations. The conformal coordinates are useful here because they map the problems to a rectangular domain, facilitating numerical solutions. With a small enstrophy budget, the optimal flows are dominated by vortices that have the same size as the flow domain.

Copyright
Corresponding author
Email address for correspondence: alben@umich.edu
References
Hide All
Ablowitz M. J. & Fokas A. S. 2003 Complex Variables: Introduction and Applications. Cambridge University Press.
Acheson D. J. 1990 Elementary Fluid Dynamics. Oxford University Press.
Açıkalın T., Garimella S. V., Raman A. & Petroski J. 2007 Characterization and optimization of the thermal performance of miniature piezoelectric fans. Intl J. Heat Fluid Flow 28 (4), 806820.
Ahlers M. F. 2011 Aircraft thermal management. In Encyclopedia of Aerospace Engineering. Wiley.
Alben S. 2015 Flag flutter in inviscid channel flow. Phys. Fluids 27 (3), 033603.
Bazant M. Z. 2004 Conformal mapping of some non-harmonic functions in transport theory. Proc. R. Soc. Lond. A 460, 14331452.
Bazant M. Z. & Crowdy D. 2005 Conformal mapping methods for interfacial dynamics. In Handbook of Materials Modeling, pp. 14171451. Springer.
Bejan A. 2013 Convection Heat Transfer. Wiley.
Bird R. B., Stewart W. E. & Lightfoot E. N. 2007 Transport Phenomena. Wiley.
Biswas G., Torii K., Fujii D. & Nishino K. 1996 Numerical and experimental determination of flow structure and heat transfer effects of longitudinal vortices in a channel flow. Intl J. Heat Mass Transfer 39 (16), 34413451.
Boussinesq J. 1902 Sur le pouvoir refroidissant d’un courant liquide ou gazeux. J. Phys. Theor. Appl. 1 (1), 7175.
Brown J. W., Churchill R. V. & Lapidus M. 1996 Complex Variables and Applications, vol. 7. McGraw-Hill.
Camassa R., Lin Z., McLaughlin R. M., Mertens K., Tzou C., Walsh J. & White B. 2016 Optimal mixing of buoyant jets and plumes in stratified fluids: theory and experiments. J. Fluid Mech. 790, 71103.
Campbell M. I., Amon C. H. & Cagan J. 1997 Optimal three-dimensional placement of heat generating electronic components. J. Electronic Packag. 119 (2), 106113.
Caulfield C. P. & Kerswell R. R. 2001 Maximal mixing rate in turbulent stably stratified Couette flow. Phys. Fluids 13 (4), 894900.
Chen Q., Liang X.-G. & Guo Z.-Y. 2013 Entransy theory for the optimization of heat transfer – a review and update. Intl J. Heat Mass Transfer 63, 6581.
Chien W.-L., Rising H. & Ottino J. M. 1986 Laminar mixing and chaotic mixing in several cavity flows. J. Fluid Mech. 170, 355377.
Choi J., Margetis D., Squires T. M. & Bazant M. Z. 2005 Steady advection–diffusion around finite absorbers in two-dimensional potential flows. J. Fluid Mech. 536, 155184.
Crowdy D. 2007 Schwarz–Christoffel mappings to unbounded multiply connected polygonal regions. In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 142, pp. 319339. Cambridge University Press.
Crowdy D. 2012 Conformal slit maps in applied mathematics. ANZIAM J. 53 (03), 171189.
Da Silva A. K., Lorente S. & Bejan A. 2004 Optimal distribution of discrete heat sources on a wall with natural convection. Intl J. Heat Mass Transfer 47 (2), 203214.
Dipprey D. F. & Sabersky R. H. 1963 Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers. Intl J. Heat Mass Transfer 6 (5), 329353.
Doering C. R., Otto F. & Reznikoff M. G. 2006 Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh–Bénard convection. J. Fluid Mech. 560, 229241.
Eagle A. & Ferguson R. M. 1930 On the coefficient of heat transfer from the internal surface of tube walls. Proc. R. Soc. Lond. A 127, 540566.
Estrada R. & Kanwal R. P. 2012 Singular Integral Equations. Springer.
Fiebig M., Kallweit P., Mitra N. & Tiggelbeck S. 1991 Heat transfer enhancement and drag by longitudinal vortex generators in channel flow. Exp. Therm. Fluid Sci. 4 (1), 103114.
Foures D. P. G., Caulfield C. P. & Schmid P. J. 2014 Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number. J. Fluid Mech. 748, 241277.
Gerty D. R.2008 Fluidic driven cooling of electronic hardware. Part I: channel integrated vibrating reed. Part II: active heat sink. PhD thesis, Georgia Institute of Technology, GA.
Golberg M. A. 1990 Numerical Solution of Integral Equations. Plenum Press.
Gopinath D., Joshi Y. & Azarm S. 2005 An integrated methodology for multiobjective optimal component placement and heat sink sizing. IEEE Trans. Compon. Packag. Technol. 28 (4), 869876.
Hassanzadeh P., Chini G. P. & Doering C. R. 2014 Wall to wall optimal transport. J. Fluid Mech. 751, 627662.
Hidalgo P., Herrault F., Glezer A., Allen M., Kaslusky S. & Rock B. S. 2010 Heat transfer enhancement in high-power heat sinks using active reed technology. In 2010 16th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), pp. 16. IEEE.
Jha S., Hidalgo P. & Glezer A. 2015 Small-scale vortical motions induced by aeroelastically fluttering reed for enhanced heat transfer in a rectangular channel. Bull. Am. Phys. Soc. 60, 95.
Karniadakis G. E. 1988 Numerical simulation of forced convection heat transfer from a cylinder in crossflow. Intl J. Heat Mass Transfer 31 (1), 107118.
Karniadakis G. E., Mikic B. B. & Patera A. T. 1988 Minimum-dissipation transport enhancement by flow destabilization: Reynolds analogy revisited. J. Fluid Mech. 192, 365391.
Kotouč M., Bouchet G. & Dušek J. 2008 Loss of axisymmetry in the mixed convection, assisting flow past a heated sphere. Intl J. Heat Mass Transfer 51 (11), 26862700.
Lamb H. 1932 Hydrodynamics. Cambridge University Press.
Lienhard J. H. 2013 A Heat Transfer Textbook. Courier Corporation.
McGlen R. J., Jachuck R. & Lin S. 2004 Integrated thermal management techniques for high power electronic devices. Appl. Therm. Engng 24 (8), 11431156.
Mohammadi B., Pironneau O., Mohammadi B. & Pironneau O. 2001 Applied Shape Optimization for Fluids, vol. 28. Oxford University Press.
Nakayama W. 1986 Thermal management of electronic equipment: a review of technology and research topics. Appl. Mech. Rev. 39 (12), 18471868.
Ockendon J. R. 2003 Applied Partial Differential Equations. Oxford University Press.
Otero J., Dontcheva L. A., Johnston H., Worthing R. A., Kurganov A., Petrova G. & Doering C. R. 2004 High-Rayleigh-number convection in a fluid-saturated porous layer. J. Fluid Mech. 500, 263281.
Ozisik M. N. 2000 Inverse Heat Transfer: Fundamentals and Applications. CRC Press.
Raschke K. 1960 Heat transfer between the plant and the environment. Annu. Rev. Plant Physiol. 11 (1), 111126.
Rohsenow W. M., Hartnett J. P. & Cho Y. I. 1998 Handbook of Heat Transfer. McGraw-Hill.
Rohsenow W. M., Hartnett J. P. & Ganic E. N. 1985 Handbook of Heat Transfer Applications. McGraw-Hill.
Sharma A. & Eswaran V. 2004 Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime. Numer. Heat Transfer A 45 (3), 247269.
Shoele K. & Mittal R. 2014 Computational study of flow-induced vibration of a reed in a channel and effect on convective heat transfer. Phys. Fluids 26 (12), 127103.
Sondak D., Smith L. M. & Waleffe F. 2015 Optimal heat transport solutions for Rayleigh–Bénard convection. J. Fluid Mech. 784, 565595.
Souza A. N.2016 An optimal control approach to bounding transport properties of thermal convection. PhD thesis, University of Michigan, MI.
Souza A. N. & Doering C. R. 2015a Maximal transport in the Lorenz equations. Phys. Lett. A 379 (6), 518523.
Souza A. N. & Doering C. R. 2015b Transport bounds for a truncated model of Rayleigh–Bénard convection. Physica D 308, 2633.
Tang W., Caulfield C. P. & Kerswell R. R. 2009 A prediction for the optimal stratification for turbulent mixing. J. Fluid Mech. 634, 487497.
Thomases B., Shelley M. & Thiffeault J.-L. 2011 A Stokesian viscoelastic flow: transition to oscillations and mixing. Physica D 240 (20), 16021614.
Waleffe F., Boonkasame A. & Smith L. M. 2015 Heat transport by coherent Rayleigh–Bénard convection. Phys. Fluids 27 (5), 051702.
Wang X. & Alben S. 2015 The dynamics of vortex streets in channels. Phys. Fluids 27 (7), 073603.
Zerby M. & Kuszewski M.2002 Final report on next generation thermal management (NGTM) for power electronics. NSWCCD Tech. Rep. TR-82-2002012.
Zimparov V. D., Da Silva A. K. & Bejan A. 2006 Thermodynamic optimization of tree-shaped flow geometries. Intl J. Heat Mass Transfer 49 (9), 16191630.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 163 *
Loading metrics...

Abstract views

Total abstract views: 347 *
Loading metrics...

* Views captured on Cambridge Core between 8th February 2017 - 23rd November 2017. This data will be updated every 24 hours.