Hostname: page-component-6bb9c88b65-wr9vw Total loading time: 0 Render date: 2025-07-20T01:29:33.025Z Has data issue: false hasContentIssue false

Optimal rigid brush for fluid capture

Published online by Cambridge University Press:  07 July 2025

Basile Radisson
Affiliation:
Nonlinear Physical Chemistry Unit, CP231, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
Hadrien Bense
Affiliation:
Nonlinear Physical Chemistry Unit, CP231, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
Lucie Domino
Affiliation:
Nonlinear Physical Chemistry Unit, CP231, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
Hoa-Ai Béatrice Hua
Affiliation:
Nonlinear Physical Chemistry Unit, CP231, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
Emmanuel Siéfert
Affiliation:
Nonlinear Physical Chemistry Unit, CP231, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
Fabian Brau*
Affiliation:
Nonlinear Physical Chemistry Unit, CP231, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
*
Corresponding author: Fabian Brau, fabian.brau@ulb.be

Abstract

Assemblies of slender structures forming brushes are common in daily life from sweepers to pastry brushes and paintbrushes. These types of porous objects can easily trap liquid in their interstices when removed from a liquid bath. This property is exploited to transport liquids in many applications, ranging from painting, dip-coating and brush-coating to the capture of nectar by bees, bats and honeyeaters. Rationalising the viscous entrainment flow beyond simple scaling laws is complex due to the multiscale structure and the multidirectional flow. Here, we provide an analytical model, together with precision experiments with ideal rigid brushes, to fully characterise the flow through this anisotropic porous medium as it is withdrawn from a liquid bath. We show that the amount of liquid entrained by a brush varies non-monotonically during the withdrawal at low speed, is highly sensitive to the different parameters at play and is very well described by the model without any fitting parameter. Finally, an optimal brush geometry maximising the amount of liquid captured at a given retraction speed is derived from the model and experimentally validated. These optimal designs open routes towards efficient liquid-manipulating devices.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bense, H., Siéfert, E. & Brau, F. 2023 Measurement of capillary forces using two fibers dynamically withdrawn from a liquid: evidence for an enhanced cheerios effect. Phys. Rev. Lett. 131 (18), 184003.CrossRefGoogle ScholarPubMed
Bertin, V., Snoeijer, J.H., Raphaël, E. & Salez, T. 2022 Enhanced dip coating on a soft substrate. Phys. Rev. Fluids 7 (10), L102002.CrossRefGoogle Scholar
Bico, J., Reyssat, E. & Roman, B. 2018 Elastocapillarity: when surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 50 (1), 629659.CrossRefGoogle Scholar
Bico, J., Roman, B., Moulin, L. & Boudaoud, A. 2004 Elastocapillary coalescence in wet hair. Nature 432 (7018), 690690.CrossRefGoogle ScholarPubMed
Charpentier, J.-B., Brändle de Motta, J.C. & Ménard, T. 2020 Capillary phenomena in assemblies of parallel cylindrical fibers: from statics to dynamics. Intl J. Multiphase Flow 129, 103304.CrossRefGoogle Scholar
Chen, H., Zhang, P., Zhang, L., Liu, H., Jiang, Y., Zhang, D., Han, Z. & Jiang, L. 2016 Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532 (7597), 8589.CrossRefGoogle ScholarPubMed
Cheng, Z., Li, C., Gao, C., Zhang, C., Jiang, L. & Dong, Z. 2023 Viscous-capillary entrainment on bioinspired millimetric structure for sustained liquid transfer. Sci. Adv. 9 (36), eadi5990.CrossRefGoogle ScholarPubMed
Courbin, L., Denieul, E., Dressaire, E., Roper, M., Ajdari, A. & Stone, H.A. 2007 Imbibition by polygonal spreading on microdecorated surfaces. Nat. Mater. 6 (9), 661664.CrossRefGoogle ScholarPubMed
Crompton, A.W. & Musinsky, C. 2011 How dogs lap: ingestion and intraoral transport in Canis familiaris . Biol. Lett. 7 (6), 882884.CrossRefGoogle ScholarPubMed
Cuban, D., Wang-Claypool, C., Dalimunthe, Y., Downs, C.T., Bowie, R.C.K., Brau, F., Johnson, S. & Rico-Guevara, A. 2024 A novel feeding mechanism: sunbirds drink nectar via intralingual suction. https://doi.org/10.1101/2024.05.14.594085.CrossRefGoogle Scholar
Derjaguin, B.V. 1943 On the thickness of the liquid film adhering to the walls of a vessel after emptying. Acta Physicochim. URSS 20, 349352.Google Scholar
Drummond, J.E. & Tahir, M.I. 1984 Laminar viscous flow through regular arrays of parallel solid cylinders. Intl J. Multiphase Flow 10 (5), 515540.CrossRefGoogle Scholar
Duprat, C., Aristoff, J.M. & Stone, H.A. 2011 Dynamics of elastocapillary rise. J. Fluid Mech. 679, 641654.CrossRefGoogle Scholar
Eggers, J. 1993 Universal pinching of 3d axisymmetric free-surface flow. Phys. Rev. Lett. 71 (21), 34583460.CrossRefGoogle ScholarPubMed
Feng, S., Zhu, P., Zheng, H., Zhan, H., Chen, C., Li, J., Wang, L., Yao, X., Liu, Y. & Wang, Z. 2021 Three-dimensional capillary ratchet-induced liquid directional steering. Science 373 (6561), 13441348.CrossRefGoogle ScholarPubMed
Gart, S., Socha, J.J., Vlachos, P.P. & Jung, S. 2015 Dogs lap using acceleration-driven open pumping. Proc. Natl Acad. Sci. USA 112 (52), 1579815802.CrossRefGoogle ScholarPubMed
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer-Verlag.CrossRefGoogle Scholar
Guyon, E., Hulin, J.-P., Petit, L. & Mitescu, C.D. 2015 Physical Hydrodynamics. Oxford University Press.Google Scholar
Ha, J., Kim, Y.S., Jiang, K., Siu, R. & Tawfick, S. 2020 Hydrodynamic elastocapillary morphing of hair bundles. Phys. Rev. Lett. 125 (25), 254503.CrossRefGoogle ScholarPubMed
Harper, C.J., Swartz, S.M. & Brainerd, E.L. 2013 Specialized bat tongue is a hemodynamic nectar mop. Proc. Natl Acad. Sci. USA 110 (22), 88528857.CrossRefGoogle ScholarPubMed
Hewes, A.E., Baldwin, M.W., Buttemer, W.A. & Rico-Guevara, A. 2023 How do honeyeaters drink nectar? Integr. Compar. Biol. 63 (1), 4858.CrossRefGoogle ScholarPubMed
Huppert, H.E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.CrossRefGoogle Scholar
Huppert, H.E. & Woods, A.W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 5569.CrossRefGoogle Scholar
Inouye, D.W. & Levin, S.A. 2013 Pollinators, role of. In Encyclopedia of Biodiversity. 2nd edn, (ed. Levin, S.A.). pp. 140146. Academic Press.CrossRefGoogle Scholar
Jackson, G.W. & James, D.F. 1986 The permeability of fibrous porous media. Can. J. Chem. Engng 64 (3), 364374.CrossRefGoogle Scholar
Kim, H.-Y. & Mahadevan, L. 2006 Capillary rise between elastic sheets. J. Fluid Mech. 548, 141150.CrossRefGoogle Scholar
Kim, W. & Bush, J.W.M. 2012 Natural drinking strategies. J. Fluid Mech. 705, 725.CrossRefGoogle Scholar
Kim, W., Gilet, T. & Bush, J.W.M. 2011 Optimal concentrations in nectar feeding. Proc. Natl Acad. Sci. USA 108 (40), 1661816621.CrossRefGoogle ScholarPubMed
Krenn, H.W. 2010 Feeding mechanisms of adult lepidoptera: structure, function, and evolution of the mouthparts. Annu. Rev. Entomol. 55 (1), 307327.CrossRefGoogle ScholarPubMed
Krenn, H.W., ed. 2019 Insect Mouthparts: Form, Function, Development and Performance. Springer Nature Switzerland AG.Google Scholar
Krenn, H.W., Plant, J.D. & Szucsich, N.U. 2005 Mouthparts of flower-visiting insects. Arthropod Struct. Dev. 34 (1), 140.CrossRefGoogle Scholar
Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. USSR 17 (42), 4254.Google Scholar
Lechantre, A., Draux, A., Hua, H.-A.B., Michez, D., Damman, P. & Brau, F. 2021 Essential role of papillae flexibility in nectar capture by bees. Proc. Natl Acad. Sci. USA 118 (19), e2025513118.CrossRefGoogle ScholarPubMed
Lechantre, A., Michez, D. & Damman, P. 2019 Collection of nectar by bumblebees: how the physics of fluid demonstrates the prominent role of the tongue’s morphology. Soft Matt. 15 (31), 63926399.CrossRefGoogle ScholarPubMed
Mitchell, R.J. & Paton, D.C. 1990 Effects of nectar volume and concentration on sugar intake rates of Australian honeyeaters (Meliphagidae). Oecologia 83 (2), 238246.CrossRefGoogle ScholarPubMed
Moon, S. & Ha, J. 2024 Dynamics of fluid–structure interaction in paintbrush. Phys. Fluids 36 (11), 112105.CrossRefGoogle Scholar
Nasto, A., Brun, P.-T. & Hosoi, A.E. 2018 Viscous entrainment on hairy surfaces. Phys. Rev. Fluids 3 (2), 024002.CrossRefGoogle Scholar
Park, K.-C., Kim, P., Grinthal, A., He, N., Fox, D., Weaver, J.C. & Aizenberg, J. 2016 Condensation on slippery asymmetric bumps. Nature 531 (7592), 7882.CrossRefGoogle ScholarPubMed
Paton, D.C. & Collins, B.G. 1989 Bills and tongues of nectar‐feeding birds: a review of morphology, function and performance, with intercontinental comparisons. Austral. J. Ecol. 14 (4), 473506.CrossRefGoogle Scholar
Princen, H.M. 1969 Capillary phenomena in assemblies of parallel cylinders: II. capillary rise in systems with more than two cylinders. J. Colloid Interface Sci. 30 (3), 359371.CrossRefGoogle Scholar
Pritchard, D., Woods, A.W. & Hogg, A.J. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.CrossRefGoogle Scholar
Py, C., Bastien, R., Bico, J., Roman, B. & Boudaoud, A. 2007 3D aggregation of wet fibers. Europhys. Lett. 77 (4), 44005.CrossRefGoogle Scholar
Quéré, D. 1999 Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31 (1), 347384.CrossRefGoogle Scholar
Reis, P.M., Jung, S., Aristoff, J.M. & Stocker, R. 2010 How cats lap: water uptake by felis catus. Science 330 (6008), 12311234.CrossRefGoogle ScholarPubMed
Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S. 2012 Droplet based microfluidics. Rep. Prog. Phys. 75 (1), 016601.CrossRefGoogle ScholarPubMed
Seiwert, J., Clanet, C. & Quéré, D. 2011 Coating of a textured solid. J. Fluid Mech. 669, 5563.CrossRefGoogle Scholar
Stone, H.A., Stroock, A.D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36 (1), 381411.CrossRefGoogle Scholar
Tang, X. & Yan, X. 2017 Dip-coating for fibrous materials: mechanism, methods and applications. J. Sol-Gel Sci. Technol. 81 (2), 378404.CrossRefGoogle Scholar
Wei, J., Rico-Guevara, A., Nicolson, S.W., Brau, F., Damman, P., Gorb, S.N., Wu, Z. & Wu, J. 2023 Honey bees switch mechanisms to drink deep nectar efficiently. Proc. Natl Acad. Sci. USA 120 (30), e2305436120.CrossRefGoogle ScholarPubMed
Weinstein, S.J. & Ruschak, K.J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36 (1), 2953.CrossRefGoogle Scholar
White, D.A. & Tallmadge, J.A. 1966 A theory of withdrawal of cylinders from liquid baths. AIChE J. 12 (2), 333339.CrossRefGoogle Scholar
Yu, Y.E., Zheng, Z. & Stone, H.A. 2017 Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge. Phys. Rev. Fluids 2 (7), 074101.CrossRefGoogle Scholar
Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F.-Q., Zhao, Y., Zhai, J. & Jiang, L. 2010 Directional water collection on wetted spider silk. Nature 463 (7281), 640643.CrossRefGoogle ScholarPubMed
Zheng, Z., Soh, B., Huppert, H.E. & Stone, H.A. 2013 Fluid drainage from the edge of a porous reservoir. J. Fluid Mech. 718, 558568.CrossRefGoogle Scholar
Supplementary material: File

Radisson et al. supplementary movie 1

Retraction of a brush (D = 17 mm, R = 0.5 mm, d = 2.0 mm) at various speeds (V = 4, 8, 16, 32 mm/min) from a bath of silicon oil (μ = 0.97 Pa s, initial immersion depth L0 = 16 mm), the frame rate being adjusted to synchronize the retractions.
Download Radisson et al. supplementary movie 1(File)
File 6.5 MB
Supplementary material: File

Radisson et al. supplementary movie 2

Retraction of a brush (D = 16 mm, R = 0.3 mm, d = 1.5 mm) at various speeds (V = 2, 8, 32, 128 mm/min) from a bath of silicon oil (μ = 0.97 Pa s, initial immersion depth L0 = 7 mm), the frame rate being adjusted to synchronize the retractions.
Download Radisson et al. supplementary movie 2(File)
File 7.6 MB
Supplementary material: File

Radisson et al. supplementary movie 3

Retraction of a brush (D = 17 mm, R = 0.5 mm, d = 2.0 mm) at various initial immersion depths (L0 = 6, 11, 16 mm) from a bath of silicon oil (μ = 0.97 Pa s, retraction speed V = 32 mm/min), the frame rate being adjusted to synchronize the retractions.
Download Radisson et al. supplementary movie 3(File)
File 4.9 MB
Supplementary material: File

Radisson et al. supplementary movie 4

Withdrawing of brushes of various rod radii (R = 0.4, 0.5, 0.6, 0.7 mm) but with the same distance between the rod centers d = 1.8 mm, diameter D = 16 mm and immersion depth L0 = 10 mm at constant speed V = 100 mm/min from a silicon oil bath (μ = 0.97 Pa s). The movie stops when the brushes have been displacement by a distance L0.
Download Radisson et al. supplementary movie 4(File)
File 2.7 MB
Supplementary material: File

Radisson et al. supplementary movie 5

Withdrawing of two parallel plates (d = 1.58 mm, W = 75 mm) immersed at a depth L0 = 42.8 mm at constant speed V = 1000 mm/min from a silicon oil bath (μ = 0.097 Pa s).
Download Radisson et al. supplementary movie 5(File)
File 1.9 MB