Skip to main content
×
Home
    • Aa
    • Aa

Optimal Taylor–Couette flow: radius ratio dependence

  • Rodolfo Ostilla-Mónico (a1), Sander G. Huisman (a1), Tim J. G. Jannink (a1), Dennis P. M. Van Gils (a1), Roberto Verzicco (a1) (a2), Siegfried Grossmann (a3), Chao Sun (a1) and Detlef Lohse (a1)...
Abstract
Abstract

Taylor–Couette flow with independently rotating inner ($i$) and outer ($o$) cylinders is explored numerically and experimentally to determine the effects of the radius ratio $\eta $ on the system response. Numerical simulations reach Reynolds numbers of up to $\mathit{Re}_i=9.5\times 10^3$ and $\mathit{Re}_o=5\times 10^3$, corresponding to Taylor numbers of up to $\mathit{Ta}=10^8$ for four different radius ratios $\eta =r_i/r_o$ between 0.5 and 0.909. The experiments, performed in the Twente Turbulent Taylor–Couette ($\mathrm{T^3C}$) set-up, reach Reynolds numbers of up to $\mathit{Re}_i=2\times 10^6$ and $\mathit{Re}_o=1.5\times 10^6$, corresponding to $\mathit{Ta}=5\times 10^{12}$ for $\eta =0.714\mbox{--}0.909$. Effective scaling laws for the torque $J^{\omega }(\mathit{Ta})$ are found, which for sufficiently large driving $\mathit{Ta}$ are independent of the radius ratio $\eta $. As previously reported for $\eta =0.714$, optimum transport at a non-zero Rossby number $\mathit{Ro}=r_i |\omega _i-\omega _o |/[2(r_o-r_i)\omega _o]$ is found in both experiments and numerics. Here $\mathit{Ro}_{opt}$ is found to depend on the radius ratio and the driving of the system. At a driving in the range between $\mathit{Ta}\sim 3\times 10^{8}$ and $\mathit{Ta}\sim 10^{10}$, $\mathit{Ro}_{opt}$ saturates to an asymptotic $\eta $-dependent value. Theoretical predictions for the asymptotic value of $\mathit{Ro}_{opt}$ are compared to the experimental results, and found to differ notably. Furthermore, the local angular velocity profiles from experiments and numerics are compared, and a link between a flat bulk profile and optimum transport for all radius ratios is reported.

Copyright
Corresponding author
Email address for correspondence: R.Ostillamonico@utwente.nl
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. Ahlers 1974 Low temperature studies of the Rayleigh–Bénard instability and turbulence. Phys. Rev. Lett. 33, 11851188.

G. Ahlers , S. Grossmann  & D. Lohse 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.

R. P. Behringer 1985 Rayleigh–Bénard convection and turbulence in liquid–helium. Rev. Mod. Phys. 57, 657687.

T. B. Benjamin 1978 Bifurcation phenomena in steady flows of a viscous liquid. Proc. R. Soc. Lond. A 359, 143.

E. Bodenschatz , W. Pesch  & G. Ahlers 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.

H. Brauckmann  & B. Eckhardt 2013b Intermittent boundary layers and torque maxima in Taylor–Couette flow. Phys. Rev. E 87, 033004.

K. Coughlin  & P. S. Marcus 1996 Turbulent bursts in Couette–Taylor flow. Phys. Rev. Lett. 77 (11), 22142217.

M. C. Cross  & P. C. Hohenberg 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 8511112.

M. A. Dominguez-Lerma , D. S. Cannell  & G. Ahlers 1986 Eckhaus boundary and wavenumber selection in rotating Couette–Taylor flow. Phys. Rev. A 34, 49564970.

R. Donnelly 1991 Taylor–Couette flow: the early days. Phys. Today 44 (November), 3239.

A. Esser  & S. Grossmann 1996 Analytic expression for Taylor–Couette stability boundary. Phys. Fluids 8, 18141819.

Th. Gebhardt  & S. Grossmann 1993 The Taylor–Couette eigenvalue problem with independently rotating cylinders. Z. Phys. B 90 (4), 475490.

D. P. M. van Gils , G. W. Bruggert , D. P. Lathrop , C. Sun  & D. Lohse 2011a The Twente Turbulent Taylor–Couette ($\mathrm{T^3C}$) facility: strongly turbulent (multi-phase) flow between independently rotating cylinders. Rev. Sci. Instrum. 82, 025105.

D. P. M. van Gils , S. G. Huisman , G. W. Bruggert , C. Sun  & D. Lohse 2011b Torque scaling in turbulent Taylor–Couette flow with co- and counter-rotating cylinders. Phys. Rev. Lett. 106, 024502.

S. Grossmann  & D. Lohse 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.

S. Grossmann  & D. Lohse 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.

S. Grossmann  & D. Lohse 2012 Logarithmic temperature profiles in the ultimate regime of thermal convection. Phys. Fluids 24, 125103.

S. G. Huisman , S. Scharnowski , C. Cierpka , C. Kaehler , D. Lohse  & C. Sun 2013 Logarithmic boundary layers in highly turbulent Taylor–Couette flow. Phys. Rev. Lett. 110, 264501.

S. G. Huisman , D. P. M. van Gils  & C. Sun 2012a Applying laser Doppler anemometry inside a Taylor–Couette geometry – using a ray-tracer to correct for curvature effects. Eur. J. Mech. (B/Fluids) 36, 115119.

S. G. Huisman , D. P. M. van Gils , S. Grossmann , C. Sun  & D. Lohse 2012b Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108, 024501.

L. P. Kadanoff 2001 Turbulent heat flow: structures and scaling. Phys. Today 54 (8), 3439.

D. P. Lathrop , J. Fineberg  & H. S. Swinney 1992a Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46, 63906405.

D. P. Lathrop , J. Fineberg  & H. S. Swinney 1992b Turbulent flow between concentric rotating cylinders at large Reynolds numbers. Phys. Rev. Lett. 68, 15151518.

G. S. Lewis  & H. L. Swinney 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59, 54575467.

D. Lohse  & K.-Q. Xia 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.

E. N. Lorenz 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130141.

A. Mallock 1896 Experiments on fluid viscosity. Phil. Trans. R. Soc. Lond. A 187, 4156.

S. Merbold , H. Brauckmann  & C. Egbers 2013 Torque measurements and numerical determination in differentially rotating wide gap Taylor–Couette flow. Phys. Rev. E 87, 023014.

R. Ostilla-Mónico , E. P. van der Poel , R. Verzicco , S. Grossmann  & D. Lohse 2014 Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26, 015114.

M. S. Paoletti  & D. P. Lathrop 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.

G. Pfister  & I. Rehberg 1981 Space dependent order parameter in circular Couette flow transitions. Phys. Lett. 83, 1922.

D. Pirro  & M. Quadrio 2008 Direct numerical simulation of turbulent Taylor–Couette flow. Eur. J. Mech. (B/Fluids) 27, 552566.

E. D. Siggia 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.

H. L. Swinney  & J. P. Gollub 1981 Hydrodynamic Instabilities and the Transition to Turbulence., Topics in Applied Physics, vol. 45. Springer.

G. I. Taylor 1936 Fluid friction between rotating cylinders. Proc. R. Soc. Lond. A 157, 546564.

P. Tong , W. I. Goldburg , J. S. Huang  & T. A. Witten 1990 Anisotropy in turbulent drag reduction. Phys. Rev. Lett. 65, 27802783.

R. Verzicco  & P. Orlandi 1996 A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys. 123, 402413.

F. Wendt 1933 Turbulente Strömungen zwischen zwei rotierenden Zylindern. Ing.-Arch. 4, 577595.

K.-Q. Xia , S. Lam  & S. Q. Zhou 2002 Heat-flux measurement in high-Prandtl-number turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 88, 064501.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 48 *
Loading metrics...

Abstract views

Total abstract views: 135 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th March 2017. This data will be updated every 24 hours.