Abramowitz, M. & Stegun, I. A.
1972
Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover.

Ahsan, S. N. & Aureli, M.
2015
Finite amplitude oscillations of flanged laminas in viscous flows: vortex–structure interactions for hydrodynamic damping control. J. Fluids Struct.
59, 297–315.

An, S. & Faltinsen, O. M.
2013
An experimental and numerical study of heave added mass and damping of horizontally submerged and perforated rectangular plates. J. Fluids Struct.
39, 87–101.

Avudainayagam, A. & Geetha, J.
1994
Oscillatory Stokes flow in two dimensions. Mech. Res. Commun.
21 (6), 617–628.

Barta, E.
2011
Motion of slender bodies in unsteady Stokes flow. J. Fluid Mech.
688, 66–87.

Brinkman, H. C.
1947
A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A
1, 27–34.

Brinkman, H. C.
1948
On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A
1, 81–86.

Chwang, A. T. & Wu, T. Y.-T.
1975
Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech.
67 (4), 787–815.

Debye, P. & Bueche, A. M.
1948
Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys.
16, 573–579.

Felderhof, B. U.
2014
Velocity relaxation of a porous sphere immersed in a viscous incompressible fluid. J. Chem. Phys.
140 (13), 134901.

Graham, D. R. & Higdon, J. J. L.
2002
Oscillatory forcing of flow through porous media. Part 2. Unsteady flow. J. Fluid Mech.
465, 237–260.

Kanwal, R. P.
1955
Vibrations of an elliptic cylinder and a flat plate in a viscous fluid. Z. Angew. Math. Mech.
35 (1-2), 17–22.

Kanwal, R. P.
1964
Drag on an axially symmetric body vibrating slowly along its axis in a viscous fluid. J. Fluid Mech.
19 (4), 631–636.

Kanwal, R. P.
1970
Note on slow rotation or rotary oscillation of axisymmetric bodies in hydrodynamics and magnetohydrodynamics. J. Fluid Mech.
41 (4), 721–726.

Kolomenskiy, D. & Schneider, K.
2009
A Fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles. J. Comput. Phys.
228 (16), 5687–5709.

Lai, R. Y. S. & Mockros, L. F.
1972
The Stokes-flow drag on prolate and oblate spheroids during axial translatory accelerations. J. Fluid Mech.
52 (1), 1–15.

Lawrence, C. J. & Weinbaum, S.
1986
The force on an axisymmetric body in linearized, time-dependent motion: a new memory term. J. Fluid Mech.
171, 209–218.

Lawrence, C. J. & Weinbaum, S.
1988
The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid. J. Fluid Mech.
189, 463–489.

Liu, Y., Li, H.-J., Li, Y.-C. & He, S.-Y.
2011
A new approximate analytic solution for water wave scattering by a submerged horizontal porous disk. Appl. Ocean Res.
33 (4), 286–296.

Loewenberg, M.
1993
The unsteady Stokes resistance of arbitrarily oriented, finite-length cylinders. Phys. Fluids
5 (11), 3004–3006.

Looker, J. R. & Carnie, S. L.
2004
The hydrodynamics of an oscillating porous sphere. Phys. Fluids
16 (1), 62–72.

Masoud, H., Stone, H. A. & Shelley, M. J.
2013
On the rotation of porous ellipsoids in simple shear flows. J. Fluid Mech.
733, R6.

Molin, B.
2001
On the added mass and damping of periodic arrays of fully or partially porous disks. J. Fluids Struct.
15 (2), 275–290.

Molin, B.
2011
Hydrodynamic modeling of perforated structures. Appl. Ocean Res.
33 (1), 1–11.

Ollila, S. T. T., Ala-Nissila, T. & Denniston, C.
2012
Hydrodynamic forces on steady and oscillating porous particles. J. Fluid Mech.
709, 123–148.

Phan, C. N., Aureli, M. & Porfiri, M.
2013
Finite amplitude vibrations of cantilevers of rectangular cross sections in viscous fluids. J. Fluids Struct.
40, 52–69.

Pozrikidis, C.
1989
A singularity method for unsteady linearized flow. Phys. Fluids
1 (9), 1508–1520.

Pozrikidis, C.
1992
Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.

Pozrikidis, C.
2011
Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press.

Prakash, J., Raja Sekhar, G. P. & Kohr, M.
2012
Faxen’s law for arbitrary oscillatory Stokes flow past a porous sphere. Arch. Mech.
64 (1), 41–63.

Ray, M.
1936
Vibration of an infinite elliptic cylinder in a viscous liquid. Z. Angew. Math. Mech.
16 (2), 99–108.

Sader, J. E.
1998
Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys.
84 (1), 64–76.

Santhanakrishnan, A., Robinson, A. K., Jones, S., Low, A. A., Gadi, S., Hedrick, T. L. & Miller, L. A.
2014
Clap and fling mechanism with interacting porous wings in tiny insect flight. J. Expl Biol.
217 (21), 3898–3909.

Shatz, L. F.
2004
Singularity method for oblate and prolate spheroids in Stokes and linearized oscillatory flow. Phys. Fluids
16 (3), 664–677.

Shatz, L. F.
2005
Slender body method for slender prolate spheroids and hemispheroids on planes in linearized oscillatory flow. Phys. Fluids
17 (11), 113603.

Shu, J.-J. & Chwang, A. T.
2001
Generalized fundamental solutions for unsteady viscous flows. Phys. Rev. E
63 (5), 051201.

Stokes, G. G.
1851
On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc.
9, 8–106.

Tsai, C.-C. & Hsu, T.-W.
2010
The method of fundamental solutions for oscillatory and porous buoyant flows. Comput. Fluids
39 (4), 696–708.

Tuck, E. O.
1969
Calculation of unsteady flows due to small motions of cylinders in a viscous fluid. J. Engng Maths
3 (1), 29–44.

Vainshtein, P. & Shapiro, M.
2009
Forces on a porous particle in an oscillating flow. J. Colloid Interface Sci.
330 (1), 149–155.

Williams, W. E.
1966
A note on slow vibrations in a viscous fluid. J. Fluid Mech.
25 (3), 589–590.

Zhang, W. & Stone, H. A.
1998
Oscillatory motions of circular disks and nearly spherical particles in viscous flows. J. Fluid Mech.
367, 329–358.