Skip to main content Accessibility help
×
Home

Optimal vortex formation in a self-propelled vehicle

  • Robert W. Whittlesey (a1) and John O. Dabiri (a1) (a2)

Abstract

Previous studies have shown that the formation of coherent vortex rings in the near-wake of a self-propelled vehicle can increase propulsive efficiency compared with a steady jet wake. The present study utilizes a self-propelled vehicle to explore the dependence of propulsive efficiency on the vortex ring characteristics. The maximum propulsive efficiency was observed to occur when vortex rings were formed of the largest physical size, just before the leading vortex ring would pinch off from its trailing jet. These experiments demonstrate the importance of vortex ring pinch off in self-propelled vehicles, where coflow modifies the vortex dynamics.

Copyright

Corresponding author

Email address for correspondence: jodabiri@caltech.edu

References

Hide All
Bartol, I. K., Krueger, P. S., Thompson, J. T. & Stewart, W. J. 2008 Swimming dynamics and propulsive efficiency of squids through ontogeny. Integr. Compar. Biol. 48 (6), 720733.
Beckwith, T. G., Marangoni, R. D. & Lienhard, J. H. 2007 Mechanical Measurements. Pearson Prentice Hall.
Bertram, C. D. 2003 Experimental studies of collapsible tubes. In Flow Past Highly Compliant Boundaries and in Collapsible Tubes, Fluid Mechanics and Its Applications, Vol. 72, pp. 5165. Springer.
Bertram, C. D. & Nugent, A. H. 2005 The flow field downstream of an oscillating collapsed tube. Trans. ASME: J. Biomech. Engng 127, 3945.
Bertram, C. D., Truong, N. K. & Hall, S. D. 2008 Piv measurement of the flow field just downstream of an oscillating collapsible tube. Trans. ASME: J. Biomech. Engng 130, 061011.
Bertram, C. D. & Tscherry, J. 2006 The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes. J. Fluids Struct. 22, 10291045.
Choutapalli, I. M. 2007 An experimental study of a pulsed jet ejector. PhD thesis, Florida State University.
Conrad, W. A. 1969 Pressure-flow relationships in collapsible tubes. IEEE Trans. Biomed. Engng BME-16 (4), 284295.
Dabiri, J. O. & Gharib, M. 2004 Fluid entrainment by isolated vortex rings. J. Fluid Mech. 511, 311331.
Dion, B., Naili, S., Renaudeaux, J. P. & Ribeau, C. 1995 Buckling of elastic tubes: study of highly compliant device. Med. Biol. Engng Comput. 33, 196201.
Finley, T. J. & Mohseni, K. 2004 Micro pulsatile jets for thrust optimization. In Proceedings of IMECE2004, 2004 ASME International Mechanical Engineering Congress and Exposition.
Fung, Y. C. 1997 Biomechanics: Circulation. Springer.
Gadre, A. S., Maczka, D. K., Spinello, D., McCarter, B. R., Stilwell, D. J., Neu, W., Roan, M. J. & Hennage, J. B. 2008 Cooperative localization of an acoustic source using towed hydrophone arrays. In Autonomous Underwater Vehicles, 2008 (AUV 2008), pp. 18. IEEE/OES.
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.
Green, G. 1835 Researches on the vibration of pendulums in fluid media. Trans. R. Soc. Edinburgh 13 (1), 5462.
Heil, M. 1996 The stability of cylindrical shells conveying viscous flow. J. Fluids Struct. 10, 173196.
Heil, M. & Jensen, O. E. 2003 Flows in deformable tubes and channels: theoretical models and biological applications. In Flow Past Highly Compliant Boundaries and in Collapsible Tubes, Fluid Mechanics and Its Applications, Vol. 72, pp. 1549. Springer.
Ho, C.-M. & Gutmark, E. 1987 Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J. Fluid Mech. 179, 383405.
Kececioglu, I., Mcclurken, M. E., Kamm, R. D. & Shapiro, A. H. 1981 Steady, supercritical flow in collapsible tubes. Part 1. Experimental observations. J. Fluid Mech. 109, 367389.
Krieg, M. & Mohseni, K. 2008 Thrust characterization of a bioinspired vortex ring thruster for locomotion of underwater robots. IEEE J. Ocean. Engng 33 (2), 123132.
Krieg, M. & Mohseni, K. 2010 Dynamic modelling and control of biologically inspired vortex ring thrusters for underwater robot locomotion. IEEE Trans. Robot. 26 (3), 542554.
Krieg, M. & Mohseni, K. 2013 Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity. J. Fluid Mech. 719, 488526.
Krueger, P. S. 2001 The significance of vortex ring formation and nozzle exit over-pressure to pulsatile jet propulsion. PhD thesis, California Institute of Technology.
Krueger, P. S., Dabiri, J. O. & Gharib, M. 2003 Vortex ring pinchoff in the presence of simultaneously initiated uniform background co-flow. Phys. Fluids 15 (7), L49L52.
Krueger, P. S., Dabiri, J. O. & Gharib, M. 2006 The formation number of vortex rings formed in uniform background co-flow. J. Fluid Mech. 556, 147166.
Krueger, P. S. & Gharib, M. 2003 The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15 (5), 1271.
Krueger, P. S. & Gharib, M. 2005 Thrust augmentation and vortex ring evolution in a fully-pulsed jet. AIAA J. 43 (4), 792801.
Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.
Love, A. E. H. 1944 A Treatise on the Mathematical Theory of Elasticity. Dover.
Maxworthy, T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51, 1532.
Moslemi, A. A. 2010 Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. PhD thesis, Southern Methodist University.
Moslemi, A. A. & Krueger, P. S. 2010 Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinspir. Biomim. 5 (3), 036003.
Moslemi, A. A. & Krueger, P. S. 2011 The effect of Reynolds number on the propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinspir. Biomim. 6 (2), 026001.
Müller, M. O., Bernal, L. P., Moran, R. P., Washabaugh, P. D., Parviz, B. A., Chou, T.-K. A., Zhang, C. & Najafi, K. 2000a Thrust performance of micromachined synthetic jets. In AIAA Fluids 2000 Conference.
Nichols, J. T. & Krueger, P. S. 2012 Effect of vehicle configuration on the performance of a submersible pulsed-jet vehicle at intermediate Reynolds number. Bioinspir. Biomim. 7 (3), 036010.
Olcay, A. B. & Krueger, P. S. 2008 Measurement of ambient fluid entrainment during laminar vortex ring formation. Exp. Fluids 44, 235247.
Palermo, T. & Flaud, P. 1987 Etude de l’effondrement à deux et trois lobes de tubes élastiques. J. Biophys. Bioméch. 11, 105111.
Petrich, J. 2009 Improved guidance, navigation, and control for autonomous underwater vehicles: theory and experiment. PhD thesis, Virginia Polytechnic Institute and State University.
Petrich, J., Neu, W. L. & Stilwell, D. J. 2007 Identification of a simplified auv pitch axis model for control design: theory and experiments. In OCEANS 2007, pp. 17.
Petrich, J. & Stilwell, D. J. 2010 Model simplification for auv pitch-axis control design. Ocean Engng 37 (7), 638651.
Prandtl, L. 1952 Essentials of Fluid Dynamics: With Applications to Hydraulics, Aeronautics, Meteorology and other Subjects. Hafner.
Reynolds, W. C., Parekh, D. E., Juvet, P. J. D. & Lee, M. J. D. 2003 Bifurcating and blooming jets. Annu. Rev. Fluid Mech. 35, 295315.
Ruiz, L. A., Whittlesey, R. W. & Dabiri, J. O. 2011 Vortex-enhanced propulsion. J. Fluid Mech. 668, 532.
Shadden, S. C., Dabiri, J. O. & Marsden, J. E. 2006 Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18, 047105.
Shariff, K. & Leonard, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24, 235279.
Siekmann, J. 1962 On a pulsating jet from the end of a tube, with application to the propulsion of certain aquatic animals. J. Fluid Mech. 15 (03), 399418.
Truong, N. K. & Bertram, C. D. 2009 The flow field downstream of a collapsible tube during oscillation onset. Commun. Numer. Meth. Engng 25, 405428.
Weihs, D. 1977 Periodic jet propulsion of aquatic creatures. Forsch. Zool. 24, 171175.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Optimal vortex formation in a self-propelled vehicle

  • Robert W. Whittlesey (a1) and John O. Dabiri (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed