Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-09T01:52:25.495Z Has data issue: false hasContentIssue false

Oscillatory convection in a porous medium heated from below

Published online by Cambridge University Press:  29 March 2006

R. N. Horne
Affiliation:
Department of Theoretical and Applied Mechanics, University of Auckland, New Zealand
M. J. O'sullivan
Affiliation:
Department of Theoretical and Applied Mechanics, University of Auckland, New Zealand

Abstract

The stability of natural convective flow in a porous medium heated both uniformly and non-uniformly from below is studied in order to determine the possibility of oscillatory and other unsteady flows, and to explore the conditions under which they may occur. The results of the numerical work are directly comparable with experiments using a Hele Shaw cell and also, in the uniformly heated case, with the results of Combarnous & Le Fur (1969) and Caltagirone, Cloupeau & Combarnous (1971). It is shown that for the uniformly heated problem there exist, in certain cases, two distinct possible modes of flow, one of which is fluctuating, the other being steady. However in the non-uniformly heated case the boundary conditions force the solution into a unique mode of flow which is regularly oscillatory when there is considerable non-uniformity in the heat input at the lower boundary, provided that the Rayleigh number is sufficiently high.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, A. 1966 J. Comp. Phys. 1, 119.
Bories, S. A. & Combarnous, M. A. 1973 J. Fluid Mech. 57, 63.
Busbee, B. L., Golub, C. H. & Nielsen, C. W. 1970 S.I.A.M. J. Numer. Anal. 7, 627.
Caltagirone, J. P., Cloupeau, M. & Combarnous, M. A. 1971 Comptes Rendus, B273, 833.
Chan, B. K. C., Ivey, C. M. & Barry, J. M. 1970 J. Heat Transfer, Trans A.S.M.E. C92, 21.
Combarnous, M. A. 1970 Rev. Gen. Therm. 108, 1355.
Combarnous, M. A. & Le Fur, B. 1969 Comptes Rendus, B269, 1009.
Crowley, W. P. 1967 J. Comp. Phys. 1, 471.
Donaldson, I. G. 1962 J. Geophys. Res. 67, 3449.
Elder, J. W. 1966a N.Z. D.S.I.R. Bull. no. 169.
Elder, J. W. 1966b J. Fluid Mech. 24, 823.
Elder, J. W. 1967a J. Fluid Mech. 27, 29.
Elder, J. W. 1967b J. Fluid Mech. 27, 609.
Elder, J. W. 1968 J. Fluid Mech. 32, 69.
Fromm, J. E. 1965 Phys. Fluids, 8, 1757.
Gill, A. E. 1969 J. Fluid Mech. 35, 545.
Holst, P. H. & Aziz, K. 1972a Int. J. Heat Mass Transfer, 15, 73.
Holst, P. H. & Aziz, K. 1972b Can. J. Chem. Engng, 50, 232.
Horton, C. W. & Rogers, F. T. 1945 J. Appl. Phys. 16, 367.
Katto, Y. & Masuoka, T. 1967 Int. J. Heat Transfer, 10, 297.
Keller, J. B. 1966 J. Fluid Mech. 26, 599.
Lapwood, E. R. 1948 Proc. Camb. Phil. Soc. 44, 508.
Moore, D. R. & Weiss, N. O. 1973 J. Fluid Mech. 58, 289.
Orszag, S. A. 1971 Studies in Appl. Math. 50, 293.
O'Sullivan, M. J. 1974 Steady convection in a porous medium. To be published.
Palm, E., Weber, J. E. & Kvernvold, O. 1972 J. Fluid Mech. 54, 153.
Schechter, R. S. 1967 The Variational Method in Engineering. McGraw-Hill.
Torrance, K. E. 1968 J. Res. Nat. Bur. Stand. B72, 281.
Veronis, G. 1966 J. Fluid Mech. 26, 49.
Wooding, R. A. 1956 J. Fluid Mech. 2, 273.
Wooding, R. A. 1960 J. Fluid Mech. 7, 501.
Yih, C.-S. 1969 Fluid Mechanics. McGraw-Hill.