Skip to main content Accessibility help

The other optimal Stokes drag profile

  • Thomas D. Montenegro-Johnson (a1) and Eric Lauga (a1)


The lowest drag shape of fixed volume in Stokes flow has been known for some 40 years. It is front–back symmetric and similar to an American football with ends tangent to a cone of $60^{\circ }$ . The analogous convex axisymmetric shape of fixed surface area, which may be of interest for particle design in chemistry and colloidal science, is characterised in this paper. This ‘other’ optimal shape has a surface vorticity proportional to the mean surface curvature, which is used with a local analysis of the flow near the tip to show that the front and rear ends are tangent to a cone of angle $30.8^{\circ }$ . Using the boundary element method, we numerically represent the shape by expanding its tangent angle in terms decaying odd Legendre modes, and show that it has 11.3 % lower drag than a sphere of equal surface area, significantly more pronounced than for the fixed-volume optimal.


Corresponding author

Email address for correspondence:


Hide All
Alonso, J. J., LeGresley, P. & Pereyra, V. 2009 Aircraft design optimization. Math. Comput. Simul. 79 (6), 19481958.
Bourot, J.-M. 1974 On the numerical computation of the optimum profile in Stokes flow. J. Fluid Mech. 65 (03), 513515.
Campana, E. F., Liuzzi, G., Lucidi, S., Peri, D., Piccialli, V. & Pinto, A. 2009 New global optimization methods for ship design problems. Optim. Eng. 10 (4), 533555.
Champion, J. A., Katare, Y. K. & Mitragotri, S. 2007 Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Cont. Rel. 121 (1), 39.
Champion, J. A. & Mitragotri, S. 2006 Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103 (13), 49304934.
Chwang, A.T. & Wu, T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67 (4), 787815.
Eloy, C. & Lauga, E. 2012 Kinematics of the most efficient cilium. Phys. Rev. Lett. 109, 038101.
Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E. & DeSimone, J. M. 2008 The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105 (33), 1161311618.
Jameson, A., Martinelli, L. & Pierce, N. A. 1998 Optimum aerodynamic design using the Navier–Stokes equations. Theor. Comput. Fluid Dyn. 10 (1–4), 213237.
Keaveny, E. E., Walker, S. W. & Shelley, M. J. 2013 Optimization of chiral structures for microscale propulsion. Nano Lett. 13 (2), 531537.
Lauga, E. & Eloy, C. 2013 Shape of optimal active flagella. J. Fluid Mech. 730, R1.
Mitragotri, S. & Lahann, J. 2009 Physical approaches to biomaterial design. Nat. Mater. 8 (1), 1523.
Mohammadi, B. & Pironneau, O. 2004 Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36, 255279.
Monteiller, C., Tran, L., MacNee, W., Faux, S., Jones, A., Miller, B. & Donaldson, K. 2007 The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occupat. Environ. Med. 64 (9), 609615.
Osterman, N & Vilfan, A. 2011 Finding the ciliary beating pattern with optimal efficiency. Proc. Natl Acad. Sci. USA 108 (38), 1572715732.
Petros, R. A. & DeSimone, J. M. 2010 Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Disc. 9 (8), 615627.
Pironneau, O. 1973 On optimum profiles in Stokes flow. J. Fluid Mech. 59 (1), 117128.
Pironneau, O. & Katz, D. F. 1974 Optimal swimming of flagellated micro-organisms. J. Fluid Mech. 66 (02), 391415.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. Taylor & Francis.
Roper, M., Pepper, R. E., Brenner, M. P. & Pringle, A. 2008 Explosively launched spores of ascomycete fungi have drag-minimizing shapes. Proc. Natl Acad. Sci. USA 105 (52), 2058320588.
Vilfan, A. 2012 Optimal shapes of surface slip driven self-propelled microswimmers. Phys. Rev. Lett. 109, 128105.
Wakiya, S. 1976 Axisymmetric flow of a viscous fluid near the vertex of a body. J. Fluid Mech. 78 (4), 737747.
Zabarankin, M. 2013 Minimum-resistance shapes in linear continuum mechanics. Proc. R. Soc. Lond. A 469 (2160), 0206.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

The other optimal Stokes drag profile

  • Thomas D. Montenegro-Johnson (a1) and Eric Lauga (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed