Skip to main content Accessibility help

Parameters influencing vortex growth and detachment on unsteady aerodynamic profiles

  • A. Widmann (a1) and C. Tropea (a1)


Experiments with a pitching and plunging airfoil are conducted in order to investigate the mechanisms responsible for the formation and detachment of leading edge vortices (LEVs). The chord length is varied from 90 to 180 mm, keeping all other non-dimensional parameters constant, specifically the Reynolds number (17 000), the Strouhal number (0.25), the reduced frequency (0.5) and the effective angle of attack history. It is shown that the mechanism of vortex detachment changes with chord length, evident in a corresponding change in flow topology. One mechanism scales with chord length, the other is attributed to viscous effects in the boundary layer. For the latter mechanism a new scaling of the LEV circulation is introduced. A second experiment investigates the influence of the reduced frequency on the LEV circulation and detachment mechanisms, again keeping all other non-dimensional parameters constant.


Corresponding author

Email address for correspondence:


Hide All
Afanasyev, Y. D. 2006 Formation of vortex dipoles. Phys. Fluids 18, 037103.
Baik, Y. S., Bernal, L. P., Granlund, K. & Ol, M. V. 2012 Unsteady force generation and vortex dynamics of pitching and plunging aerofoils. J. Fluid Mech. 709, 132.
Betz, A. 1950 Wie entsteht ein Wirbel in einer wenig zähen Flüssigkeit? Naturwissenschaften 37, 193196.
Buckingham, E. 1914 On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345376.
Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.
Dabiri, J. O. & Gharib, M. 2005 Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 538, 111136.
DeVoria, A. C. & Ringuette, M. J. 2012 Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins. Exp. Fluids 52, 441462.
Didden, N. 1979 On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. 30, 101115.
Doligalski, T. L., Smith, C. R. & Walker, J. D. 1994 Vortex interactions with walls. Annu. Rev. Fluid Mech. 26, 573616.
Domenichini, F. 2011 Three-dimensional impulsive vortex formation from slender orifices. J. Fluid Mech. 666, 506520.
Fage, A. & Johansen, F. C. 1928 XLII. The structure of vortex sheets. Lond. Edinb. Dublin Phil. Mag. J. Sci. 5, 417441.
Foss, J. F. 2004 Surface selections and topological constraint evaluations for flow field analyses. Exp. Fluids 37, 883898.
Gerrard, J. H. 1966 The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25, 401413.
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 14221429.
Jones, A. R. & Babinsky, H. 2010 Unsteady lift generation on rotating wings at low Reynolds numbers. J. Aircraft 47, 10131021.
Jones, A. R. & Babinsky, H. 2011 Reynolds number effects on leading edge vortex development on a waving wing. Exp. Fluids 51, 197210.
Kaden, H. 1931 Aufwicklung einer unstabilen Unstetigkeitsfläche. Ing.-Arch. 2, 140168.
Krueger, P. S., Dabiri, J. O. & Gharib, M. 2006 The formation number of vortex rings formed in uniform background co-flow. J. Fluid Mech. 556, 147166.
McCroskey, W. J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14, 285311.
Nudds, R. L., Taylor, G. K. & Thomas, A. L. R. 2004 Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds. Proc. R. Soc. Lond. B 271, 20712076.
Pedrizzetti, G. 2010 Vortex formation out of two-dimensional orifices. J. Fluid Mech. 655, 198216.
Raffel, M., Willert, C. E., Wereley, S. T. & Kompenhans, J. 2007 Particle Image Velocimetry. Springer.
Ringuette, M. J., Milano, M. & Gharib, M. 2007 Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J. Fluid Mech. 581, 453468.
Rival, D. E., Kriegseis, J., Schaub, P., Widmann, A. & Tropea, C. 2014 Characteristic length scales for vortex detachment on plunging profiles with varying leading-edge geometry. Exp. Fluids 55, 18.
Rival, D. E., Manejev, R. & Tropea, C. 2010 Measurement of parallel blade–vortex interaction at low Reynolds numbers. Exp. Fluids 49, 8999.
Rival, D. E., Prangemeier, T. & Tropea, C. 2008 The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight. Exp. Fluids 46, 823833.
Roshko, A.1954 On the drag and shedding frequency of two-dimensional bluff bodies – Technical Note 3169. Tech. Rep. National Advisory Committee for Aeronautics.
Sattari, P., Rival, D. E., Martinuzzi, R. J. & Tropea, C. 2012 Growth and separation of a start-up vortex from a two-dimensional shear layer. Phys. Fluids 24, 114.
Schlichting, H. & Gersten, K. 2001 Boundary Layer Theory. Springer.
Triantafyllou, M. S., Techet, A. H. & Hover, F. S. 2004 Review of experimental work in biomimetic foils. IEEE J. Ocean. Engng 29 (3), 585594.
Wojcik, C. J. & Buchholz, H. J. 2014 Vorticity transport in the leading-edge vortex on a rotating blade. J. Fluid Mech. 743, 249261.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed