Aarts, D. G. A. L., Lekkerkerker, H. N. W., Guo, H., Wegdam, G. H. & Bonn, D.
2005
Hydrodynamics of droplet coalescence. Phys. Rev. Lett.
95, 164503.
Derby, B.
2010
Inkjet printing of functional and structural materials: fluid property requirements, feature stability and resolution. Annu. Rev. Mater. Res.
40, 395–414.
Duchemin, L., Eggers, J. & Josserand, C.
2003
Inviscid coalescence of drops. J. Fluid Mech.
487, 167–178.
Eddi, A., Winkels, K. G. & Snoeijer, J. H.
2013
Short time dynamics of viscous drop spreading. Phys. Fluids
25, 013102.
Eggers, J., Lister, J. R. & Stone, H. A.
1999
Coalescence of liquid drops. J. Fluid Mech.
401, 293–310.
Enright, R., Miljkovic, N., Al-Obeidi, A., Thompson, C. V. & Wang, E. N.
2012
Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale. Langmuir
28, 14424–14432.
Hopper, R. W.
1984
Coalescence of two equal cylinders: exact results for creeping viscous plane flow driven by capillarity. J. Am. Ceram. Soc.
67, 262–264.
Hopper, R. W.
1990
Plane Stokes flow driven by capillarity on a free surface. J. Fluid Mech.
213, 349–375.
Hopper, R. W.
1993a
Coalescence of two viscous cylinders by capillarity: part 1. Theory. J. Am. Ceram. Soc.
76, 2947–2952.
Hopper, R. W.
1993b
Coalescence of two viscous cylinders by capillarity: part 2. Shape evolution. J. Am. Ceram. Soc.
76, 2953–2960.
Menchaca-Rocha, A., Martínez-Dávalos, A., Núńez, R., Popinet, S. & Zaleski, S.
2001
Coalescence of liquid drops by surface tension. Phys. Rev. E
63, 046309.
Oguz, H. N. & Prosperetti, A.
1989
Surface-tension effects in the contact of liquid surfaces. J. Fluid Mech.
203, 149–171.
Paulsen, J. D.
2013
Approach and coalescence of liquid drops in air. Phys. Rev. E
88, 063010.
Paulsen, J. D., Burton, J. C. & Nagel, S. R.
2011
Viscous to inertial crossover in liquid drop coalescence. Phys. Rev. Lett.
106, 114501.
Paulsen, J. D., Burton, J. C., Nagel, S. R., Appathurai, S., Harris, M. T. & Basaran, O.
2012
The inexorable resistance of inertia determines the initial regime of drop coalescence. Proc. Natl Acad. Sci. USA
109, 6857–6861.
Paulsen, J. D., Carmigniani, R., Kannan, A., Burton, J. C. & Nagel, S. R.
2014
Coalescence of bubbles and drops in an outer fluid. Nat. Commun.
5, 3182.
Richardson, S.
1992
Two-dimensional slow viscous flows with time-dependent free boundaries driven by surface tension. Eur. J. Appl. Maths
3, 193–207.
Shikhmurzaev, Y. D.
2007
Capillary Flows with Forming Interfaces. Chapman & Hall/CRC.
Sprittles, J. E. & Shikhmurzaev, Y. D.
2012a
Coalescence of liquid drops: different models versus experiment. Phys. Fluids
24, 122105.
Sprittles, J. E. & Shikhmurzaev, Y. D.
2012b
The dynamics of liquid drops and their interaction with solids of varying wettabilities. Phys. Fluids
24, 082001.
Sprittles, J. E. & Shikhmurzaev, Y. D.
2012c
A finite element framework for describing dynamic wetting phenomena. Intl J. Numer. Meth. Fluids
68, 1257–1298.
Sprittles, J. E. & Shikhmurzaev, Y. D.
2013
Finite element simulation of dynamic wetting flows as an interface formation process. J. Comput. Phys.
233, 34–65.
Sprittles, J. E. & Shikhmurzaev, Y. D.
2014a
The coalescence of liquid drops in a viscous fluid: interface formation model. J. Fluid Mech.
751, 480–499.
Sprittles, J. E. & Shikhmurzaev, Y. D.
2014b
Dynamics of liquid drops coalescing in the inertial regime. Phys. Rev. E
89, 063006.
Thoroddsen, S. T., Etoh, T. G. & Takehara, K.
2008
High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech.
40, 257–285.
Thoroddsen, S. T. & Takehara, K.
2000
The coalescence cascade of a drop. Phys. Fluids
12, 1265–1267.
Thoroddsen, S. T., Takehara, K. & Etoh, T. G.
2005
The coalescence speed of a pendent and sessile drop. J. Fluid Mech.
527, 85–114.
Wu, M., Cubaud, T. & Ho, C.
2004
Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids
16, 51–54.