Skip to main content
×
×
Home

Partial coalescence from bubbles to drops

  • F. H. Zhang (a1), M.-J. Thoraval (a1) (a2), S. T. Thoroddsen (a1) and P. Taborek (a3)
Abstract

The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second-stage pinch-offs. Numerous sub-satellites are observed when the length of the top protrusion of the drop exceeds the Rayleigh instability wavelength. We also find a parameter regime where the focusing of more than one capillary wave can pinch-off satellites. One realization shows a sequence of three pinch-offs, where the middle one pinches off a toroidal bubble.

Copyright
Corresponding author
Email address for correspondence: sigurdur.thoroddsen@kaust.edu.sa
References
Hide All
Aarts, D. G. A. L., Lekkerkerker, H. N. W., Guo, H., Wegdam, G. H. & Bonn, D. 2005 Hydrodynamics of droplet coalescence. Phys. Rev. Lett. 95 (16), 164503.
Anilkumar, A. V., Lee, C. P. & Wang, T. G. 1991 Surface-tension-induced mixing following coalescence of initially stationary drops. Phys. Fluids A 3 (11), 25872591.
Aryafar, H. & Kavehpour, H. P. 2006 Drop coalescence through planar surfaces. Phys. Fluids 18 (7), 072105.
Aryafar, H. & Kavehpour, H. P. 2009 Electrocoalescence: effects of DC electric fields on coalescence of drops at planar interfaces. Langmuir 25 (21), 1246012465.
Baldessari, F. & Leal, L. G. 2006 Effect of overall drop deformation on flow-induced coalescence at low capillary numbers. Phys. Fluids 18, 013602.
Bhakta, A. & Ruckenstein, E. 1997 Decay of standing foams: drainage, coalescence and collapse. Adv. Colloid Interface Sci. 70, 1124.
Blanchette, F. & Bigioni, T. P. 2006 Partial coalescence of drops at liquid interfaces. Nat. Phys. 2 (4), 254257.
Blanchette, F. & Bigioni, T. P. 2009 Dynamics of drop coalescence at fluid interfaces. J. Fluid Mech. 620, 333352.
Blanchette, F., Messio, L. & Bush, J. W. M. 2009 The influence of surface tension gradients on drop coalescence. Phys. Fluids 21 (7), 072107.
Burton, J. C., Huisman, F. M., Alison, P., Rogerson, D. & Taborek, P. 2010 Experimental and numerical investigation of the equilibrium geometry of liquid lenses. Langmuir 26 (19), 1531615324.
Burton, J. C., Rutledge, J. E. & Taborek, P. 2004 Fluid pinch-off dynamics at nanometer length scales. Phys. Rev. Lett. 92 (24), 244505.
Burton, J. C. & Taborek, P. 2008 Bifurcation from bubble to droplet behavior in inviscid pinch-off. Phys. Rev. Lett. 101 (21), 214502.
Burton, J. C., Waldrep, R. & Taborek, P. 2005 Scaling and instabilities in bubble pinch-off. Phys. Rev. Lett. 94 (18), 184502.
Case, S. C. & Nagel, S. R. 2008 Coalescence in low-viscosity liquids. Phys. Rev. Lett. 100 (8), 084503.
Charles, G. E. & Mason, S. G. 1960a The coalescence of liquid drops with flat liquid/liquid interfaces. J. Colloid Sci. 15 (3), 236267.
Charles, G. E. & Mason, S. G. 1960b The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 15 (2), 105122.
Chen, X., Mandre, S. & Feng, J. J. 2006 Partial coalescence between a drop and a liquid–liquid interface. Phys. Fluids 18 (5), 051705.
Dai, B. & Leal, L. G. 2008 The mechanism of surfactant effects on drop coalescence. Phys. Fluids 20, 040802.
Ding, H., Li, E. Q., Zhang, F. H., Sui, Y., Spelt, P. D. M. & Thoroddsen, S. T. 2012 Propagation of capillary waves and ejection of small droplets in rapid droplet spreading. J. Fluid Mech. 697, 92114.
Duchemin, L., Eggers, J. & Josserand, C. 2003 Inviscid coalescence of drops. J. Fluid Mech. 487, 167178.
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14 (9), 30003008.
Eggers, J., Lister, J. R. & Stone, H. A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293310.
Friend, J. & Yeo, L. Y. 2011 Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83 (2), 647704.
Gilet, T., Mulleners, K., Lecomte, J., Vandewalle, N. & Dorbolo, S. 2007a Critical parameters for the partial coalescence of a droplet. Phys. Rev. E 75 (3), 036303.
Gilet, T., Vandewalle, N. & Dorbolo, S. 2007b Controlling the partial coalescence of a droplet on a vertically vibrated bath. Phys. Rev. E 76 (3), 035302.
Gonnermann, H. M. & Manga, M. 2007 The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39, 321356.
Hamlin, B. S., Creasey, J. C. & Ristenpart, W. D. 2012 Electrically tunable partial coalescence of oppositely charged drops. Phys. Rev. Lett. 109 (9), 094501.
Honey, E. M. & Kavehpour, H. P. 2006 Astonishing life of a coalescing drop on a free surface. Phys. Rev. E 73 (2), 027301.
Hopper, R. W. 1993 Coalescence of two viscous cylinders by capillarity. Part I: theory. J. Am. Ceram. Soc. 76 (12), 29472952.
Kavehpour, H. P. 2015 Coalescence of drops. Annu. Rev. Fluid Mech. 47, 245268.
Keller, J. B., Milewski, P. A. & Vanden-Broeck, J.-M. 2000 Merging and wetting driven by surface tension. Eur. J. Mech. (B/Fluids) 19 (4), 491502.
Lamb, H. 1975 Hydrodynamics, 6th edn. Dover.
Li, C., Wang, Z., Wang, P.-I., Peles, Y., Koratkar, N. & Peterson, G. P. 2008 Nanostructured copper interfaces for enhanced boiling. Small 4 (8), 10841088.
Li, E. Q., Al-Otaibi, S. A., Vakarelski, I. U. & Thoroddsen, S. T. 2014 Satellite formation during bubble transition through an interface between immiscible liquids. J. Fluid Mech. 744, R1.
Liao, Y. & Lucas, D. 2010 A literature review on mechanisms and models for the coalescence process of fluid particles. Chem. Engng Sci. 65, 28512864.
Martin, D. W. & Blanchette, F. 2015 Simulations of surfactant effects on the dynamics of coalescing drops and bubbles. Phys. Fluids 27 (1), 012103.
deMello, A. J. 2006 Control and detection of chemical reactions in microfluidic systems. Nature 442 (7101), 394402.
Menchaca-Rocha, A., Martínez-Dávalos, A., Núñez, R., Popinet, S. & Zaleski, S. 2001 Coalescence of liquid drops by surface tension. Phys. Rev. E 63 (4), 046309.
Nakayama, H., Klug, D. D., Ratcliffe, C. I. & Ripmeester, J. A. 2003 Ordering and clathrate hydrate formation in co-deposits of xenon and water at low temperatures. Chem. Eur. J. 9 (13), 29692973.
Oguz, H. N. & Prosperetti, A. 1989 Surface-tension effects in the contact of liquid surfaces. J. Fluid Mech. 203, 149171.
Ohnishi, M., Azuma, H. & Straub, J. 1999 Study on secondary bubble creation induced by bubble coalescence. Adv. Space Res. 24 (10), 13311336.
Paulsen, J. D., Burton, J. C., Nagel, S. R., Appathurai, S., Harris, M. T. & Basaran, O. A. 2012 The inexorable resistance of inertia determines the initial regime of drop coalescence. Proc. Natl Acad. Sci. USA 109 (18), 68576861.
Paulsen, J. D., Carmigniani, R., Kannan, A., Burton, J. C. & Nagel, S. R. 2014 Coalescence of bubbles and drops in an outer fluid. Nat. Commun. 5, 3182.
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.
Pucci, G., Harris, D. M. & Bush, J. W. M. 2015 Partial coalescence of soap bubbles. Phys. Fluids 27 (6), 061704.
Ray, B., Biswas, G. & Sharma, A. 2010 Generation of secondary droplets in coalescence of a drop at a liquid–liquid interface. J. Fluid Mech. 655, 72104.
Renardy, Y., Popinet, S., Duchemin, L., Renardy, M., Zaleski, S., Josserand, C., Drumright-Clarke, M. A., Richard, D., Clanet, C. & Quéré, D. 2003 Pyramidal and toroidal water drops after impact on a solid surface. J. Fluid Mech. 484, 6983.
Rioboo, R., Adão, M. H., Voué, M. & De Coninck, J. 2006 Experimental evidence of liquid drop break-up in complete wetting experiments. J. Mater. Sci. 41 (16), 50685080.
Roux, D. C. D. & Cooper-White, J. J. 2004 Dynamics of water spreading on a glass surface. J. Colloid Interface Sci. 277 (2), 424436.
Sjöblom, J., Aske, N., Auflem, I. H., Brandal, Ø. Y., Havre, T. E., Saether, Ø. Y., Westvik, A., Johnsen, E. E. & Kallevik, H. 2003 Our current understanding of water-in-crude oil emulsions. Recent characterization techniques and high pressure performance. Adv. Colloid Interface Sci. 100–102, 399473.
Thoroddsen, S. T. 2006 Fluid dynamics: droplet genealogy. Nat. Phys. 2 (4), 223224.
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2008 High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech. 40, 257285.
Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Ootsuka, N. 2005a On the coalescence speed of bubbles. Phys. Fluids 17 (7), 071703.
Thoroddsen, S. T., Qian, B., Etoh, T. G. & Takehara, K. 2007 The initial coalescence of miscible drops. Phys. Fluids 19 (7), 072110.
Thoroddsen, S. T. & Takehara, K. 2000 The coalescence cascade of a drop. Phys. Fluids 12 (6), 12651267.
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2005b The coalescence speed of a pendent and a sessile drop. J. Fluid Mech. 527, 85114.
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5 (9), 697702.
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. & McGillis, W. R. 2009 advances in quantifying air–sea gas exchange and environmental forcing. Annu. Rev. Mater. Sci. 1, 213244.
Williams, A. 1973 Combustion of droplets of liquid fuels: a review. Combust. Flame 21 (1), 131.
Wu, M., Cubaud, T. & Ho, C.-M. 2004 Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids 16 (7), L51L54.
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing …. Annu. Rev. Fluid Mech. 38, 159192.
Yue, P., Zhou, C. & Feng, J. J. 2006 A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids. Phys. Fluids 18 (10), 102102.
Zhang, F. H., Li, E. Q. & Thoroddsen, S. T. 2009 Satellite formation during coalescence of unequal size drops. Phys. Rev. Lett. 102 (10), 104502.
Zhang, F. H. & Thoroddsen, S. T. 2008 Satellite generation during bubble coalescence. Phys. Fluids 20 (2), 022104.
Zhang, L. V., Toole, J., Fezzaa, K. & Deegan, R. D. 2012 Evolution of the ejecta sheet from the impact of a drop with a deep pool. J. Fluid Mech. 690, 515.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
VIDEO
Movies

Zhang et al. supplementary movie
High-speed video of partial coalescence inside the pressure chamber for density ratio of 0.13. Corresponding to Figure 3(b). Video frame rate is about 125 kfps.

 Video (20 KB)
20 KB
VIDEO
Movies

Zhang et al. supplementary movie
Formation of multiple satellites, from focusing of subsequent capillary waves. Corresponding to Figure 17(a). Frame rate is about 129 kfps.

 Video (328 KB)
328 KB
VIDEO
Movies

Zhang et al. supplementary movie
Formation of multiple satellites. Corresponding to Figure 15(a). Frame rate is about 66 kfps.

 Video (827 KB)
827 KB
VIDEO
Movies

Zhang et al. supplementary movie
High-speed video of partial coalescence inside the pressure chamber for density ratio of 0.71. Corresponding to Figure 3(d). Video frame rate is about 81 kfps.

 Video (61 KB)
61 KB
VIDEO
Movies

Zhang et al. supplementary movie
High-speed video of partial coalescence inside the pressure chamber for density ratio of 0.03. Corresponding to Figure 3(a). Video frame rate is about 125 kfps.

 Video (42 KB)
42 KB
VIDEO
Movies

Zhang et al. supplementary movie
Numerical simulation of partial coalescence for a range of density ratios, $D=\rho_i/\rho_o =$~0.001 (black), 0.015 (green), 0.050 (red), 0.100 (blue), 0.300 (magenta), and 1.000 (cyan). , Corresponds to Figure 5(a).

 Video (16.9 MB)
16.9 MB
VIDEO
Movies

Zhang et al. supplementary movie
Numerical simulation of partial coalescence and resulting vorticity structures inside the father bubble, comparing the dynamics for different density ratios, of 0.03, 0.13, 0.35 and 0.71. Same conditions as in Figure 3.

 Video (15.8 MB)
15.8 MB
VIDEO
Movies

Zhang et al. supplementary movie
Numerical simulation of partial coalescence, comparing the dynamics for different density ratios, of 0.03, 0.13, 0.35 and 0.71. Corresponds to Figure 3.

 Video (6.0 MB)
6.0 MB
VIDEO
Movies

Zhang et al. supplementary movie
High-speed video of partial coalescence inside the pressure chamber for density ratio of 0.35. Corresponding to Figure 3(c). Video frame rate is about 64 kfps.

 Video (24 KB)
24 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed